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Abstract

In Formula 1, the difference between winning and losing often comes down to strategic decisions
made before the cars even hit the track. This project develops a machine learning model using the
FastF1 Python library to predict lap times and optimize tyre strategies, paving the way for smarter
race planning. Our model utilizes rich telemetry and timing data to forecast lap times accurately,
allowing us to simulate different tire strategies and identify the most beneficial ones under varying
conditions.

This work is the first step towards a broader goal: a comprehensive pit stop strategy model. We
aim to make advanced race strategy accessible, providing a tool that is easy to use for anyone. By
breaking down complex data and offering clear, actionable insights, we are setting the stage for more

informed, data-driven decisions in Formula 1.

1 Introduction

Inspired by the innovative "Virtual Strategy Engineer" paper[HTGB20], our project introduces a user-
friendly race simulation model to a wider audience. Heilmeier et al.’s research in utilizing machine
learning and neural networks to automate race strategies inspired us to simplify this technology. Their
approach showed that leveraging artificial neural networks could predict and optimize race outcomes
effectively, considering elements like tyre wear and fuel levels. The paper employs a confusion matrix to
determine how accurate the model is by looking at whether the model was able to correctly predict when
a car pitted in a race. However, correctly predicting when a car pitted in a race does not necessarily
translate to the truly best and correct time a car should have pit. Our goal is to solve for this issue,
creating a simplified, yet accurate model that is able to find the true correct pit stop time for any given
car.

To accomplish this lofty goal, we outlined several steps we needed to take to build such a model. First,



we wanted to create a lap time simulator trained on historical data so that we could directly compare
different tyre strategies. Next, we wanted to use the lap time simulator to create a more complex race
simulator engine that takes into account all 20 drivers. Finally, we aim to use the race simulator engine
along with historical data to see how race results would change when different strategies are employed.
This would give us a better sense of how "correct" our model is. With this approach in mind, this paper

focuses specifically on the first step in this project, examining our lap time simulator and its applications.

2 Data Preparation

To create a lap time simulator, we again took inspiration from "Virtual Strategy Engineer." However,
rather than creating our own dataset or using their own, we opted to pull all our data from the FastF1
Python Package. FastF1 contains a vast amount of F1 data from 2018-2024 from event level data to
granular telemetry data. In examining the timing data, with the project requirements in mind, these

were the final attributes we settled on for our model.

Feature Name Definition
Year Year the race occurred
RaceName Track where the race occurred
Driver The name of the driver
Team The name of the team
Lap Number What number lap it is in the race
InLap If the car is pitting on a given lap
OutLap If the car is exiting the pits on a given lap
Compound The type of tyre being used
TyreAge The age (in lap numbers) of the tyre being used
Position What place the racer is in
TrackStatus State of the track (Clear, VSC, Red Flag, etc.)
LapTime The time (s) it took to complete a lap

Table 1: Independent and Dependent Variables.

To acquire this data, we created a data acquisition loop that iterated through each event in each
season from 2018-2023. From there, we pulled every single lap in a given race containing the data from
our feature set above and appended it to a compiled dataframe. From these laps, some data cleaning
steps were applied. All wet races were removed from the dataset due to our belief that they would not
accurately be captured by the model, and similar being done in other studies. Next, any laps that were
missing a lap time were deleted, as they would prove of no use in a model made to predict lap time. At

the end of this process, we were left with a dataset containing 124,756 total laps.



3 Modeling

To develop a robust predictive model for our lap time simulation, we utilized ensemble learning methods,
which combine multiple individual models to enhance predictive performance and stability. Specifi-
cally, we implemented a Voting Regressor, integrating two powerful regression algorithms: Extra Trees

Regressor and Random Forest Regressor.

3.1 Model Setup

The Voting Regressor operates by averaging the predictions of its constituent regressors. For our imple-

mentation, we chose:

e Extra Trees Regressor: An ensemble method like Random Forest but creates trees from the

entire dataset instead of a bootstrap sample and uses random thresholds for splitting nodes.

e Random Forest Regressor: A well-known ensemble method that builds multiple decision trees

and merges them together to obtain a more accurate and stable prediction.

Each regressor in our ensemble was initialized with default parameters, except where randomness is

controlled for reproducibility (e.g., setting random state in Random Forest Regressor).

3.2 Data Preparation and Training

Our dataset comprises various features, including year, race track, driver details, lap information, tire
usage, and track conditions. The data was split into a training set and a test set with an 80/20 ratio
using a stratified method based on the year and race to ensure a representative distribution of data across
both sets.

The model was trained on the training data using 5-fold cross-validation to ensure the model’s gen-
eralizability and to mitigate overfitting. The median absolute error was used as the scoring function
during cross-validation, as it provides a clear measure of prediction accuracy without being as affected

by outliers compared to other common accuracy metrics.



Average Feature Importance of Voting Regressor
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Figure 1: Model Feature Importance.

3.3 Model Evaluation

After training, the Voting Regressor was used to predict lap times on the unseen test set. The model’s

performance was evaluated using two metrics:

e Median Squared Error: Measures the median of the squares of the errors, i.e., the median

squared difference between the estimated values and the actual value.

e Median Absolute Error: Provides a measure of errors between paired observations. It’s partic-
ularly useful because it provides a linear score without squaring each error, giving a more direct

understanding of error magnitude.

The results from the test set indicated that the ensemble model performed well:

e Test Median Squared Error: 0.197

o Test Median Absolute Error: 0.443

e R-Squared: 0.965

The R-squared value of 0.965 shows that the model explains 96.5 percent of the variance in the lap

times, highlighting its strong predictive capabilities.



Predicted vs. Actual Lap Times
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Figure 2: Predicted vs. Actual Lap Times.
3.4 Cross-Validation Results

The cross-validation results further validated the model’s performance across different subsets of the
training data, showing its consistency and stability under varying conditions. Here are the detailed

cross-validation Mean Absolute Error scores:
o Cross-Validation Median Absolute Error Scores: [0.500325 0.49068 0.482155 0.49155 0.4797125]
o Mean Cross-Validation Median Absolute Error: 0.489

These scores demonstrate the model’s reliability, with an average Median Absolute Error close to the
single-test Median Absolute Error, confirming the effectiveness of our modeling approach. An overall
Cross-Validation score of 0.489 means that we can expect a median absolute error of 0.489 seconds.
While this value may seem a little large, by examining the Median Absolute and Median Squared Error
by lap time, we can see that the first couple of laps, due to a chaotic track environment, and the last
few laps, due to smaller sample sizes, have larger Median Absolute and Squared Errors, which logically

makes sense and cause the overall Median Absolute Error to be greater.



Median Squared Error Of Actual vs. Predicted Lap Times By Lap Number
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Figure 3: Median Squared Error by lap.
4 Results

With our model complete, we wanted to do some exploratory analysis to examine the results of the

model. First, we decided to look at the specific race tracks where our model is more successful.

Table 2: Top 5 and Worst 5 Tracks Based on Deviation Percentage
RaceName Avg Actual Lap Time Avg Predicted Lap Time Deviation Percentage Deviation

Austin 93.3734 93.3677 -0.0057 0.0061%
Melbourne 88.0677 88.0812 0.0135 0.0153%
Imola 99.9351 99.8916 -0.0435 0.0436%
Lusail 92.0199 91.9746 -0.0453 0.0492%
Monte Carlo 84.3151 84.2588 -0.0563 0.0667%
Sakhir 90.7839 90.5682 -0.2158 0.2377%
Portimao 86.5495 86.7648 0.2153 0.2487%
Silverstone 84.0349 84.2607 0.2258 0.2687%
Singapore 88.1284 88.4613 0.3328 0.3777%
Yas Marina 74.9999 75.3479 0.3480 0.4640%

Unsurprisingly, our model has the least amount of deviation for courses that were apart of the F1



calendar for many years. Austin and Monte Carlo for example have been apart of the calendar every
year from 2018-2023. At the bottom of our list, we have circuits that tend to be tougher circuits to
drive, and thus have more unpredictability. Singapore, for example, is known for its very challenging
tight turns causing many crashes and unpredictability. Still, the worst performing track, Yas Marina,
only had a deviation percentage of 0.4640 which is still incredibly low.

In our analysis of the predictive model for lap times at the Shanghai Grand Prix 2018, we focused on
comparing the predicted times against the actual race data for drivers Pierre Gasly (GAS) and Sergio
Perez (PER). Figure 4 illustrates a detailed comparison over the course of 55 laps with the deviations

between the model’s predictions and real-world outcomes.
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Figure 4: 2018 Shanghai Lap Times Predicted vs. Actual (Gasly and Perez)

The graph shows a stable performance in the predictions for Gasly in the heat of the race, but
variations do appear on the first few and last couple laps. However, these variations are nowhere greater
than two seconds, which while meaningful, is not way too far different. This indicates a high level of
accuracy in the predictive model for Gasly, suggesting that the model is well-tuned to his racing style and

the specific dynamics of the Shanghai circuit. It is worth noting that Gasly was penalized ten seconds



at his final race time for causing an avoidable collision, but this is not reflected in individual lap times,
therefore it does not show up in our model.

On the other hand, the predictions for Sergio Perez exhibit a more significant variance, particularly
noticeable at around the last few laps where the prediction consistently deviates and at the start of the
race as well. The model could be less familiar with Perez’s racing style than compared to Gasly’s, or it
could simply be due to random chance that the predictions exhibit more deviation. Again, the deviations
are nowhere more than a max of two seconds, showing our model’s overall strong ability to predict lap

times.

5 Simulation

The enhanced predictive capabilities demonstrated in the "Results" section enable us to simulate race
outcomes with a high degree of accuracy using our advanced race simulation model. This model has

been designed to incorporate various inputs to generate a detailed simulation of any given race.

5.1 Model Inputs

The primary inputs for the simulation model are:

e Driver and Team Name: By specifying the driver, the model adjusts for individual driving
styles, historical performance metrics, and specific strengths and weaknesses that influence race
outcomes. It also allows the simulation to account for team-specific variables such as pit stop

efficiency, team strategies, and the quality of the car setup.

e Year: This input is important as it helps let the model know the strength of the given team and

car for a particular year.

e Race Name: This input is crucial as they provide context regarding the track layout, typical

weather conditions, and other race-specific factors that were present during the specified year.

5.2 Practical Applications

This simulation tool is invaluable for teams during the pre-race strategy formulation. It allows teams

to explore various "what-if" scenarios, tailoring strategies to maximize performance based on predicted



outcomes. Furthermore, it serves as a training tool for drivers, providing them with virtual experience
under a wide range of race conditions. Below, we simulated every possible pit stop strategy for Pierre

Gasly for the 2018 Chinese Grand Prix.

Table 3: Shanghai 2018 Optimal Racing Strategies and Pit Laps Analysis

Final Time (s) Pit Lap(s) Strategy
5330.26691 17 [MEDIUM, HARD)]
5330.68597 19 [MEDIUM, HARD]
5330.90684 18 [MEDIUM, HARD]
5331.03798 21 [MEDIUM, HARD]
5331.19960 16 [MEDIUM, HARD|
5331.23530 20 [MEDIUM, HARD|
5332.11906 16 [SOFT, HARD]
5332.31504 22 [MEDIUM, HARD]
5332.35340 17 [SOFT, HARD]
5333.23397 18 [SOFT, HARD]
5518.92802 [10, 11] [HARD, SOFT, SOFT]
5502.17034 [10,11]  [MEDIUM, SOFT, SOFT]

As we can see, the model identifies two clear dominant strategies: starting on the medium compound
and pitting to the hard compound, or starting on the soft compound and likewise pitting to the hard
compound. Using this, we could strategize for Pierre Gasly to start on the medium tyre with a pit
window of lap 17-22 and his teammate at the time, Brendon Hartley, to start on the soft tyre with a
pit window of 15-18 to account for possible deviation. This simulation tool provides an accurate way to
derive tyre strategies for any given race.

In addition, we wanted to run some tests on 2024 data. We simulated the pit stop strategies for

Lando Norris.

Table 4: Lando Norris Miami 2024 Optimal Racing Strategies and Pit Laps Analysis

Strategy Rank Pit Lap(s) Strategy
1 28 [MEDIUM, HARD]
2 29 [MEDIUM, HARD]
3 30 [MEDIUM, HARD|
4 31 [MEDIUM, HARD|
5 27 [MEDIUM, HARD|

Interestingly enough, our model predicted the quickest strategy to be starting on mediums, pitting
on lap 28, and switching to the hard tyre. This strategy is the exact strategy Lando Norris and McLaren
used during the 2024 Miami Grand Prix that led to Lando’s first ever F1 win. This example shows the

models effectiveness and how it can be used to accurately predict lap times and determine strategies.



6 Conclusion and Future Work

This study has presented a simplified, yet comprehensive approach to predicting Formula 1 lap times and
optimizing race strategies using advanced machine learning techniques. By leveraging the FastF1 library,
we have accessed rich telemetry and timing data, which served as the foundation for our predictive models.
Our analysis has demonstrated that the models can not only forecast lap times with high accuracy but
also simulate race strategies that can significantly influence race outcomes.

The application of the Voting Regressor, combining the strengths of Extra Trees and Random Forest
regressors, has proven effective in handling the complex and dynamic nature of F1 racing data. The
model’s ability to account for many variables such as tyre wear and track characteristics has allowed for

predictions that are relevant to real-world racing scenarios.

6.1 Limitations and Future Work

While our model demonstrates strong predictive capabilities, it is not without limitations. The accuracy
of the predictions can be affected by random events such as accidents or sudden weather changes which
are inherently unpredictable and not always reflected in historical data.

For future work, we aim to:

e Incorporate real-time data feeds during races to update predictions dynamically as race conditions

change.

Expand the model to include more granular data on track and tire conditions to enhance the

accuracy of tire strategy predictions.

Expand upon this project and create a full race simulator, taking into account all drivers at once.

Create a robust pit stop predictor based on the full race simulator.

In conclusion, combining machine learning with Formula 1 racing can create opportunities to optimize
race strategies. As we keep enhancing and expanding upon our models, the possibilities for transforming
racing strategies are becoming more and more real. This research boosts the strategic play in one of the

most high-tech sports on the planet where each tenth of a second is meaningful.
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