
Fluctuations of Passage Time around Time

Constant in First Passage Percolation and Its

Simulation

Kaile Ding

October 2020

Abstract

First Passage Percolation is a study on shortest path problems on
graphical models. It was first introduced by Hammersley and Welsh
in 1965 as a model of fluid flow through a porous media[10]. In this
paper, we first introduce the first passage percolation model defined
on the square lattice Z2 and then describe some basic results about
the time constant and limit shape. Then, we focus on simulating the
time constant and limit shapes, and discuss the graph algorithm used
and theoretical error bounds. Finally, we present the results of our
simulation.

1 Introduction

In 1965, Hammersley and Welsh introduced a formulation of first passage
percolation as a model of fluid flow through a porous media [10]. This
model has a rather simple definition yet incredible connections with several
fascinating conjectures. In this paper, we will focus on the square lattice
Z2 for simplicity and mathematical tractability. However, it’s worth noting
that a number of results are applicable to the general lattice Zd too.

Let E(Z2) be the collection of nearest-neighbor edge in Z2. Then, for
each edge e in E(Z2), assign a non-negative random variable τe to it. Note,
in this paper, we assume the collection (τe) is independent and identically
distributed with common distribution F and measure µ. There are some
variants of the model that do not assume i.i.d weights, but they are beyond
the scope of this paper.

1

A path Γ is a sequence of edges (e1, e2, e3, ...) such that for each n ≥ 1,
en and en+1 share exactly one endpoint and all edges (and therefore all
vertices) are distinct. For any finite path Γ, its passage time or first passage
time T (Γ) is defined as follow:

Definition 1 (Passage Time).

T (Γ) =
∑
e∈Γ

τe

and for two given points x, y ∈ Z2

T (x, y) = inf
Γ
T (Γ)

where the infimum is over all nearest-neighbor lattice paths Γ from x to y

Then, for each t ≥ 1, let

B(t) = {y ∈ Z2 : T (0, y) ≤ t}

where B could be viewed as the set of all points that have a shortest path
with distance smaller or equal to t from the origin. In the case that F (0) = 0,
we have that (Z2, T (·, ·)) is a metric space and B(t) ∩ Zd is a random ball
with radius t around the origin.

A typical question in first passage percolation is about the behavior of
B(t) as t→∞. This question is closely related to the asymptotic behavior
of the passage time T (0, x) as x→∞ which is the subject of this paper. We
first introduce the result observed by Hammersley and Welsh [10] that the
expected passage time was sub-additive and, therefore, showed the existence
of the time constant. This result was later strengthened by Kingman [14]
by applying his sub-additive ergodic theorem.

Later, building on Richardson’s shape theorem and the sub-additive er-
godic theorem, Cox and Durrett [5] and Kesten [12] gave an analogue of
the law of large numbers for the random ball B(t). It roughly says that

there exist a deterministic limit shape B0 such that B(t)
t → B0. Then, we

discuss the fluctuation of this limit shape, which includes the variance and
the order of fluctuations. Though there are many open questions related
to the fluctuation of the passage time, we first introduce the predictions
from physicists’ simulation in two dimensions (there are conflicting predic-
tions in higher dimensions), and then demonstrate the rigorous result of
the sub-linear variance from Benjamini-Kalai-Schramm [3] and Alexander’s
contribution in finding the upper bounds on non-random fluctuations [1].

2

With these theories, we would then demonstrate a simulation to verify
the results in limiting shapes and it related fluctuation. Several keys result in
graph algorithms that are going to be helpful for the implementation will be
introduced, including the Bellman-Ford algorithm and Dijkstra’s algorithm.

2 Limit Shape

2.1 Sub-additivity and the time constant

The first step to study the limiting behavior of the passage time was taken
by Hammersley and Welsh [10] that they observed the passage time is sub-
additive by construction.

Definition 2 (Sub-additivity). A function h : Z2 → R is sub-additive if

h(x) + h(y) ≥ h(x+ y) for all x, y ∈ Z2

Then, we can make the following proposition:

Proposition. h(x) = ET (z, x) is sub-additive for any fixed z

The proof of this proposition follows from part (a) of the proof of The-
orem 1 from [2] as we will discuss in this paper. Then, by Fekete’s lemma:

Lemma 1 (Fekete’s Sub-additive Lemma). For every sub-additive sequence
{an}∞n=1, the limit limn→∞

an
n exosts and is equal to the infimum inf ann .

(The limit may be ±∞)

we have that h(nx)
n always has a limit and, thus, t(0,ne1)

n → µ(e1) in
probability where e1 ∈ Z2 and µ(e1) = inf Et(0, ne1)/n.

This result was later strengthened by Kingman to almost sure (a.s) and
L1 convergence by applying his sub-additive ergodic theorem [15], and we
are describing the time constant via the following theorem:

Theorem 1 (Theorem 2.18 in [11]). Assume that

Emin[t1, ..., t2d] <∞

where ti are i.i.d copies of τe. Then there exists an constant µ(e1) ∈ [0,∞)
(called the time constant) such that

lim
n→∞

T (0, ne1)

n
= µ(e1) = inf

n
E
T (0, ne1)

n
a.s and in L1

3

In plain words, this result shows that for e1 in the lattice, the passage
time T (0, ne1) grows linearly in n and the growth rate is defined as the time
constant. It’s important to note that e1 may be replaced by any x ∈ Rd by
appropriately extending T (0, x) to Rd (will be discussed on Page 5).

The proof of the existence of the time constant is a classic application
of the sub-additive ergodic theorem[15] defined as follow:

Theorem 2 (Sub-additive Ergodic Theorem [15]). Let (Xm,n)0≤m<n be a
family of random variables that satisfies:

(a) X0,n ≤ X0,m +Xm,n, for all 0 < m < n.

(b) The distribution of sequence (Xm,m+k)k≥1 and (Xm+1.m+k+1)k≥1 is
the same for all m ≥ 0.

(c) For each k ≥ 1, the sequence (Xnk,(n+1)k)n≥0 is stationary.

(d) for some finite constant c

Then

lim
n→∞

X0,n

n
exists a.s. and in L1

Furthermore, if the stationary sequence in (c) is also ergodic, then the limit
is constant almost surely and equal to

lim
n→∞

EX0,n

n
= inf

n

1

n
EX0,n

We show how Theorem 2 can be used to prove Theorem 1. Note, the
proof of sub-additive ergodic theorem can be found in [14], which is beyond
the scope of this paper.

Proof of Theorem 1 from [2]. Let Xm,n = T (me1, ne1) and we show that
this Xm,n satisfies conditions (a) to (d) in Theorem 2:

For (a), note that a path from 0 to ne1 does not necessarily go through
me1, while a concatenation of paths from 0 to me1 and from me1 to ne1

gives us a path from 0 to ne1. Therefore, by the defintion of T , we have

T (0, ne1) ≤ T (0,me1) + T (me1, ne1)

which satisfies (a) (triangle inequality).

For (b), (c), and ergodicity, since the collection of τe is i.i.d., it is invariant
under horizontal shifts of Z2. EX0,n > −cn holds as τe is non-negative for
all edges e in Z2.

4

As for (d), we have assumed that

Emin[t1, ..., t2d] <∞

in Theorem 1. Since there are 2d disjoint deterministic paths Γ1, ..., Γ2d in
Zd (d = 2 in the square lattice) joining 0 to e1, we have

T (0, e1) ≤ min{T (Γ1), ..., T (Γ2d)}

Then, we can reorder them so that Γ1 is the path with the largest number
of edges and let B be the number of edges in Γ1. Then

P(T (0, e1) > s) ≤
2d∏
i=1

P(T (Γi) > s) ≤ P(T (Γ1) > s)2d

and
P(T (Γ1) > s) ≤ BP(τe > s/B)

Then, by setting Y = min{t1, ..., t2d} and combining the previous inequali-
ties, we have

P(T (0, e1) > s) ≤ B2dP(τe > s/B)2d = B2dP(Y > s/B)

which is the desired result.

Similarly, we can extend the result above to the rational coordinates and
define a homogeneous function µ : Q2 → R such that, for any x ∈ Q2,

lim
n→∞

T (0, nx)

n
= µ(x) a.s. and in L1

It’s easy to see the following properties for µ for x, y ∈ Qd and c ∈ Q

1. µ(x+ y) ≤ µ(x) + µ(y)

2. µ(cx) = |c|µ(x)

3. µ is invariant under symmetries of Zd that fix the origin

4. µ is uniformly continuous and Lipschitz on bounded subsets of Qd, so
it has a unique continuous extension to Rd

5

The last term can be done by using the standard real analysis approach:
let (xn)n be a sequence in Q2 such that xn → x as n → ∞. Then, µ(xn)
is Cauchy and µ(x) could be defined as its limit, which extends the time
constant to R2.

It might be noticeable that the result above is an analogue of the central
limit theorem and one may presume that

T (0, nx)− nµ(x)√
n

d−→ N (0, 1)

However, as we will discuss in the fluctuation section, a central limit theorem
with Gaussian fluctuations does not hold.

2.2 Limit shape B0

For each x ∈ Z2, we now know the average time to go in the direction of (0, x)
converges to µ(x). Then, a natural question was raised by Hammersley and
Welsh: “What does a ball of large radius look like?” [10]. In this subsection,
we would discuss how the time constant µ describes the random ball B(t)
when t→∞.

Let pc be the threshold for Bernoulli bond percolation, which is the
critical value that large clusters and long-range connectivity first appears
(we know that pc = 1/2 for the square lattice from [13]). Then, let M be
the set of Borel probability measures on [0,∞) satisfying

Emin{td1, .., td2d} <∞

where ti are independent copy of τe and with

F (0) < pc(d)

These two restrictions ensure that: 1. holes do not form inside the
growing cluster and 2. there is no infinite cluster through the origin (i.e.
µ(x) 6= 0) (see Remark).

Then, we have this important shape theorem proposed by Cox and Dur-
rett in 1981:

Theorem 3 ([5]). For each v ∈ M, there exists a deterministic convex,
compact set Bv in Rd such that for each ε > 0,

P
(

(1− ε)Bv ⊆
B(t)

t
⊆ (1 + ε)Bv for all large t

)
= 1

6

Furthermore, B0 has a non-empty interior and is symmetric about the
axes of Rd.

Remark. In the case that F (0) < pc(d) fails. Kesten proved that

For FPP on Zd, µ(e1) > 0 if and only if F (0) < pc(d)

as Theorem 6.1 in [11]. This theorem indicates that, in our case, the time
constant µ(e1) = 0. Therefore, we have the limit shape Bv = Rd as shown
in Theorem 1.10 in [11], which is essentially an infinite cluster through the
origin.

To prove Theorem 3, we first need to show that the growth of B(t) in a
fixed rational direction is linear. From Theorem 1, we have that, for x ∈ Q

P
(

lim
n→∞

T (0, nx)

n
exists

)
= 1

and, therefore,

P

⋂
x∈Q

(
lim
n→∞

T (0, nx)

n
exists

) = 1

This implies that for all ε and x, we have∣∣∣∣T (0, nx)

x
− µ(x)

∣∣∣∣ < ε for large enough n

Then, we make the following claim:

Claim. Theorem 3 is equivalent as saying

lim
||x||1→∞

T (0, x)− µ(x)

||x||1
= 0 (1)

Proof. For the forward direction of this claim, first observe that µ is bounded.
Since µ is a nondegenerate norm of Rd and any two norms on a finite-
dimensional space are equivalent, there exist constants C1, C2 such that

C1||x||1 ≤ µ(x) ≤ C2||x||1 for all x ∈ Rd (2)

Take Bv = {x : µ(x) ≤ 1}.

7

Suppose (1) is true. Then from (1), we have that for all ε > 0, there
exist k such that for all y ∈ B(t) with ||y||1 > k.

µ(y)− ε||y||1 ≤ T (0, y) ≤ µ(y) + ε||y||1

Let
sup
||x||1≤k

|T (0, x)− µ(x)| = C3

We first show that
B(n)

n
⊆ (1 + ε)Bv

Take y ∈ B(n), T (0, y) ≤ n. If ||y||1 > k, we have µ(y) − ε||y||1 ≤ n.
Then, by (2), we have ||y||1 ≤ n

C1−ε . Thus, by the properties mentioned in
Section 2.1,

µ(y/n) =
µ(y)

n
≤ 1 +

ε||y||1
n
≤ 1 + εC

for some constant C. The last step is true since ||y||1 ≤ max k, n
C1−ε . There-

fore, we get the desired result as

B(n)

n
⊆ (1 + εC)Bv = (1 + ε′)Bv by taking the first ε small

Then, for the other part:

(1− ε′)Bv ⊆
B(n)

n

we take y ∈ µ(y) ≤ 1− ε′. By (2), we have ||y||1 ≤ 1−ε′
C2

. Then, by (1),

|T (0, ny)− nµ(y)| ≤ εn||y||1

which implies

T (0, ny) ≤ n(1− ε′) + nµ(y)

= n(1− ε′) +
nε(1− ε′)

C2

≤ n− ε′ + ε− ε′ε
C

≤ n

Therefore, ny ∈ B(n), so y ∈ B(n)
n , which is the desired result.

8

Conversely, we prove the counter-positive of the backward direction.
Suppose there exist sequence (xn)n in such that

lim
||xn||1→∞

T (0, xn)− µ(xn)

||xn||1
= c0 > 0

Without loss of generality, we choose (xn)n so that

xn
n
∈ (1− ε)Bv and T (0, xn) > n

, for all n. Then, we want to show that (1− ε)Bv 6⊆ B(n)
n . Rearrange (xn)n

in a descending order and find a sub-sequence (xak)k such that there is a
sequence (bk)k where bk = 1−ε

µ(xak) that makes

µ(
xak
bk

) = 1− ε

Then, we have

T (0, xak) ≥ µ(xak) +
c0||xak||1

2
≥ (1 + C)µ(xak) for constant C

= (1 + C)(1− ε)bk ≥ bk for small enough ε

with a positive probability for small enough ε (this is possible when ak is
large). Therefore, for infinitely many k,

xak 6∈ B(bk)⇔
xak
bk
6∈ B(bk)

bk

so,

(1 + ε)Bv 6⊆
B(n)

n

Lemma 2 (Difference estimate). Let v ∈ M. Then there exists a constant
κ <∞ such that, for any x ∈ Zd

P

(
sup

z∈Zd,z 6=x

T (x, z)

||x− z||1
< κ

)
> 0 (3)

The proof of this Lemma is skipped here and a sketch of it could be
found in [2].

9

Proof for Theorem 3. We call the vertex x ∈ Zd that appears in (3) as a
“good” vertex. Then, to take advantage of the Lemma, we first prove the
following claim

Claim. Let ζ ∈ Zd \ {0}. For a given realization of edge-weights, denote by
(nk)k the sequence of natural numbers such that nkζ is a good vertex. Then,
with probability one, the sequence (nk)k is infinite and

lim
k→∞

nk+1

nk
= 1

To show this claim holds, we use the fact that the passage time is ergodic
(as previously proven). The ergodic theorem implies that the sequence (nk)k
is infinite almost surely. Let Am denote the event that mζ is a good vertex,
then

k

nk
=

1

nk

nk∑
i=1

1Ai

where 1 stands for the indicator function. Then, by the ergodic theorem,
we have that the right-hand side converges to the probability in (3) as n gets
large. Suppose the probability it converges to is p. Therefore, by

nk+1

nk
=
nk+1

k + 1

k + 1

k

k

nk

n→∞−−−→ p
1

p
= 1

we get the desired result.

Then, to prove Theorem 3, we construct a contradiction. Suppose The-
orem 3 is not true. Then, by our claim above, since the probability is one,
there are instance ω in the collection of edge-weight configuration such that

1) for all ζ ∈ Zd, the condition in the claim above holds

and

2) there exist sequence (xi)i such that lim
n→∞

T (0, xi)− µ(xi)

||xi||1
= δ > 0 (4)

Assume that xi/||xi||1 converges to some y with ||y||1 = 1. This holds
because the finite dimensional unit sphere is compact. Then, we have∣∣∣∣ µ(xn)

||xn||1
− µ(y)

∣∣∣∣ < δ/2 for large n (5)

10

Therefore, by (4),

|T (0, xn)− ||xn||1µ(y)| > δ||xn||1
2

We show the contradiction by showing that the left hand side of (5) is small.
We find some z ∈ Rd with ||z||1 = 1 such that ||z − y||1 < δ′ and z = x/M
for some x ∈ Zd and M ∈ Z+. Then, there must exist a sequence (nk) such
that nkMz is a good vertex and

nk+1

nk
goes to one. For any n, there is a kZ+

such that
nk+1M ≥ ||xn||1 ≥ nkM

Let is k be k(n). Fix K > 0 such that nk+1 < (1 + δ′)nk and∣∣∣∣T (0, nkMz)

nkM
− µ(z)

∣∣∣∣ < δ′ for all k > K

Let n be large enough so that k(n) > K. Then, we have∣∣∣∣T (0, xn)

||xn||1
− µ(y)

∣∣∣∣ ≤ ∣∣∣∣T (0, xn)− T (0, nkMz)

||xn||1

∣∣∣∣
+

∣∣∣∣T (0, nkMz)

||xn||1
− T (0, nkMz)

nkM

∣∣∣∣
+

∣∣∣∣T (0, nkMz)

nkM
− µ(z)

∣∣∣∣+ |µ(z)− µ(y)|

For the first term, because k(n) > K, we have

nkM ≤ ||xn||1 ≤ (1 + δ′)nkM (6)

||nkMy − nkMz||1 ≤ δ′nkM

|| xn
||xn||1

− y||1 < δ′

Therefore, ||xn − nkMz||1 ≤ 2δ′||xn||1. Since nkMz is a good vertex,

|T (0, xn)− T (0, nkMz)| ≤ κ||xn − xkMz||1 ≤ 2κδ′||xn||1

so this term is small.

For the second term, rewrite it as∣∣∣∣T (0, nkMz)

nkM

(
nkM

||xn||1
− 1

)∣∣∣∣
11

Then, by (6) we have that the second factor is small. Also, since k > K,
we have that the first factor is around µ(z). Therefore, their product is
small.

For the third term, it’s bounded above by δ′ as a direct result from
k > K.

For the fourth term, if µ is identically zero, then this term is trivially
zero. If µ is not identically zero, it’s a norm on Rd. Because ||z − y||1 < δ′

and norms on a finite-dimensional vector space are equivalent, the forth term
is bounded above by Cδ′ where C is a constant, so it’s small.

Therefore, we have bounded the left-hand-side of (5) and it’s going to
zero as δ′ goes to zero. Since δ′ is chosen arbitrarily, this is a contradiction
with our assumption and, therefore, proves the theorem.

3 Fluctuation

From the previous discussion on time constant, we have that

lim
n→∞

T (0, nx)

n
= µ(x) a.s. and in L1

which is equivalent as
T (0, x)

||x||1
→ µ(

x

||x||1
)

From this, we can approximate the passage time between 0 and a vertex
x ∈ Z2 can be almost surely as

T (0, x) = µ(x) + o(||x||1)

= µ(x) + o(||x||1) + ET (0, x)− ET (0, x)

which implies

o(||x||1) = T (0, x)− ET (0, x) + ET (0, x)− µ(x)

Traditionally, the error term is split into two parts. The first part (T (0, x)−
ET (0, x)) is a random fluctuation that can be treated using concentration of
measure, and the second part (ET (0, x)−µ(x)) is a non-random fluctuation
that is analyzed using the bound of the first. We will discuss them separately
in this paper.

In the physics literature [17, 18], it is expected from simulation that,
under some mild moment conditions, both the random and non-random

12

fluctuations have order xχ where χ is independent of of the direction of
x ∈ Zd.

Var(T (0, x)) ∼ ||x||2χ1 and E(T (0, x))− µ(x) ∼ ||x||χ1

We call this χ the fluctuation exponent. It’s also expected that the exponent
χ depends only on the dimension d not the distribution F , and the following
dependence on d is predicted for χ from simulations:

d χ

1 1/2

2 1/3

3 ?

. .

For d = 1, the passage time T (0, x) is a sum of ||x||1, which are i.i.d.
random variables. By central limit theorem, we have that χ(1) = 1/2.
However, for d ≥ 2, it’s only predicted that χ < 1/2 and χ(2) = 1/3 (there
are conflicting predictions for higher dimensions). Though there are many
open questions and comments regarding variance bounds and the fluctuation
exponent, this section will be devoted to the rigorous results we have in the
field.

3.1 Upper bound for random fluctuation

The first important work regarding the upper bound for the variance was
done by Kesten in 1993. He introduced the ”method of bounded differences”
to the first passage percolation model and improved the bounds for χ to:

0 ≤ χ(d) ≤ 1/2 for all d ≥ 1 (7)

Theorem 4 ([12]). Assume Eτ2
e < ∞, P(τe = 0) < pc(d) and that the

distribution of τe is not concentrated at one point. There exist C1, C2 > 0
such that for all non-zero x ∈ Zd,

C1 ≤ Var(T (0, x)) < C2||x||1

Note that we are using the notation x+ = max{0, x}. To prove Theorem
4, the Efron-Stein inequality is a very handy tool and its proof can be found
in [9].

13

Theorem 5 (Efron-Stein’s inequality [9]). Let X1, X2, ... be independent
and let X ′i be an independent copy of Xi for i ≥ 1. If f is an L2 function
of (X1, X2, ...), then we have

Var(f) ≤
∞∑
i=1

E[(Zi − Z)+]2,

where Z = f(X1, X2, ...) and

Zi = f(X1, ..., Xi−1, X
′
i, Xi+1, ...)

Then, by applying Theorem 5 to the passage time, we have that

Var(T (0, x)) ≤
∞∑
i=1

E[(Ti(0, x)− T (0, x))+]2

and the rest of the proof for Theorem 4 could be found in [2].

While (7) is the best result we have for the general lattice Zd, significant
improvement has been obtained for the square lattice (d = 2). The first
proof of sublinear variance for T (0, x) was done by Benjamini et al. in [3]
for Bernoulli τe.

Theorem 6 (Theorem 1 in [3]). For τe that are Bernoulli: there exist 0 <
a < b < ∞ such that τe takes values a or b with probability 1/2, there is a
constant C = C(d, a, b) such that for all x ∈ Zd, ||x||1 ≥ 2,

Var(T (0, x)) ≤ C ||x||1
log||x||1

The most recent proof was done by Damron et al. in [6] that applies to
all distribution with 2 + log moments.

Theorem 7 ([6]). For d ≥ 2, suppose P(τe = 0) < pc and Eτ2
e (logτe)+ <∞.

There exists C > 0 such that for all x ∈ Zd with ||x||1 > 1,

Var(T (0, x)) ≤ C ||x||1
log||x||1

3.2 Alexander’s Theorem for non-random fluctuation

As for the non-random fluctuation, the most significant contribution was
contributed by Alexander in his paper [1], and this result concerns the rate

14

of convergence of a deterministic non-negative sub-additive function h on
the lattice Zd to it limit g where

g(x) := lim
n

h(nx)

n

It’s easy to see that g is approached from above:

g(x) ≤ h(x) for all x ∈ Zd

Let Φ be the set of all positive non-decreasing functions on (1,∞). Then,
fix a < 1 and, for φ ∈ Φ, let Qx(a, φ) be

Qx(a, φ) := {y ∈ Zd : h(y) < gx(y) + |x|aφ(|x|), gx(y) ≤ g(x)}

Definition 3 (CHAP: convex hull approximation property). A sub-additive
function h satisfies the convex hall approximate property (CHAP) with ex-
ponent a and correction φ if there exist L > 1 such that

x/α ∈ Co(Qx(a, φ)) for some α ∈ [1, L], for all x ∈ Qd

where Co(∗) denotes the convex hull.

Definition 4 (GAP: general approximation property). For a > 0 and φ ∈
Φ, we say a sub-additive function h satisfies general approximation property
(GAP) with exponent a and correction factor φ if there is M > 1 and C > 0
such that

g(x) ≤ h(x) ≤ g(x) + C|x|aφ(|x|)

for all x ∈ Zd and |x| ≥M .

With these definition, Alexander’s main theorem is the following:

Theorem 8 (Theorem 1.8 in [1]). Suppose h is a non-negative sub-additive
function on Zd which has sub-linear growth. If h satisfies CHAP with expo-
nent a and correction factor φ for some a > 0, then h satisfies GAP with
exponent a and correction factor φ

The proof of this theorem can be found in Section 2 of [1]. Then, by
applying Theorem 8 to the first passage percolation model, the upper bound
of the non-random fluctuation could be limited to:

ET (0, x)− µ(x) ≤ C||x||1/2log(||x||1),

and the proof is provided in Section 3 of [1].

Also, Alexander improved the the error bounds in the shape theorem

15

Theorem 9 (Theorem 3.1 in [1]). If F (0) < pc and
∫
eλxdF (x) < ∞ for

some λ > 0, then for constants C1 and C2,

P
(

(1− C1t
−1/2logt)B0 ⊂ t−1B(t) ⊂ (1 + C2t

−1/2logt)B0 | t large
)

= 1

Note, this result will be used to get a lose estimator in our simulation.

The current state of art was proven in 2014 that for the low moment
case along with a concentration inequality for the lower tail of T (0, x) in [7]
by using Alexander’s method.

Theorem 10 (Proposition 1.1 in [7]). Assume that P (τe = 0) < pc and
EY 2 < ∞ where Y is the minimum of d i.i.d. copies of τe. There exists C
such that for all x ∈ Zd with ||x||1 > 1,

µ(x) < ET (0, x) ≤ µ(x) + C
√
||x||1log(||x||1)

4 Practical Algorithms for the Shortest Path Prob-
lem

In this section, we would introduce several key algorithms in graphical op-
timization theory that are handy to find the shortest path in the graphical
model. Instead of limiting our discussion in the square lattice Z2 as we did
in the previous sections, these algorithms will be discussed on the general
graph G = (V,E).

Similar to the definitions in the square lattice, in graph G = (V,E),
E represents the collection of all edges and V represents the collection of
all vertices. To solve the shortest path problem, we are provided with a
direct, weighted graph G = (V,E) with weight function w : E → R (we
sometimes use we for the weight of e, which is equivalent to w(e)). A path
p is an ordered sequence of vertices (v0, v1, v2, ..., vk) such that there exist
edge e = (vi, vi+1) for each i ∈ {0, 1, 2, ..., k} in E. The weight of path p is
the sum of its edges:

w(p) =
k−1∑
i=0

w(vi, vi+1)

The shortest path weight δ(u, v) and shortest path p from vertex u to
vertex v is defined as:

16

Definition 5 (Shortest Path and Shortest Path Weight).

δ(u, v) =

{
min{w(p)}, if there is a path p from u to v

∞, otherwise

and a shortest path from vertex u to vertex v is any path p with weight
w(p) = δ(u, v)

It’s clear that this shortest path weight has the same definition as the
passage time between two vertices (as we introduced in section 1) and that’s
why we are introducing these algorithms for practical use of the first passage
percolation model. Note, there are other variants of the shortest path prob-
lem, but we are only focusing on the single-source shortest-paths problem
in this section.

One of the key properties of the shortest path is its optimal substructure,
which many algorithms rely on. The following lemma states this property
more precisely.

Lemma 3 (Subpaths of shortest paths are shortest paths). For weighted,
direct graph G = (V,E) with weight function w : E → R, let path p =<
v0, v1, ..., vk > be a shortest path from vertex v0 to vertex vk and, for any i
and j such that 0 ≤ i ≤ j ≤ k, let pij =< vi, vi+1, ..., vj > be the subpath of
p from vi to vj. Then, pij is a shortest path from vi to vj.

Proof. Let’s prove by contradiction. It’s obvious that w(p) = w(p0i) +
w(pij) + w(pjk) if we decompose path p into p0i, pij , and pjk. Suppose that
there exist a path p′ij from vertex vi to vertex vj with weight w(p′ij) < w(pij).
Then, the combination of paths p0i, p

′
ij , and pjk is a path from v0 to vk whose

weight w(p0i) + w(p′ij) + w(pjk) < w(p). This is a contradiction with the
assumption that p is a shortest path from v0 to vk.

4.1 Relaxation

The key technique used in the shortest path algorithm is called relaxation.
To introduce this process, we would first need to give an estimated shortest
path weight (or called shortest-path estimate) v.d to each vertex v in V . To
initialize the shortest-path estimate, v.d is set to ∞ for every vertex v in V
except the source node s, and s.d is set to 0 as the shortest path of getting
back to itself is always 0.

17

Meanwhile, in order to keep track of the shortest path, another attribute
v.π is added to each v in V in order to record the vertex’s predecessor in
the shortest path. In the initialization, v.π is set to NIL for each vertex v
in V .

Algorithm 1 Initialize Single Source(G, s)

for each vertex v ∈ G.V do
v.d =∞
v.π = NIL

end for
s.d = 0

Then, to relax an edge e = (u, v), we need to check whether the shortest
path to v could be improved by going through u. If so, update v’s estimated
weight v.d and predecessor v.π by the following pseudo-code.

Algorithm 2 Relax(u, v, w)

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
v.π = u

end if

This process has many interesting properties that are essential for dis-
cussions in this section. Here are several of them with corresponding proofs
[4].

Lemma 4 (Triangle inequality). For any edge (u, v) ∈ E, we have δ(s, v) ≤
δ(s, u) + w(u, v).

Proof. We prove this lemma by contradiction: Assume that there exist an
edge (u, v) ∈ E such that δ(s, v) > δ(s, u) + w(u, v).

Then, this contradicts the definition of shortest path weight since com-
bining the shortest path from s to u with the edge (u, v) would yield a path
that has a lower weight than the shortest path weight from s to v.

Therefore, δ(s, v) ≤ δ(s, u) + w(u, v) for all edges (u, v) in E.

Lemma 5 (Upper-bound property). For all vertices v ∈ V , v.d ≥ δ(s, v)
and once v.d achieves the value δ(s, v). it never changes.

Proof. We prove this lemma by induction over the number of relaxation
steps.

18

For the base case, as we have initialized v.d = ∞ for all vertices except
the source s, we have that v.d ≥ δ(s, v) for all v ∈ V − {s}. Also, since
δ(s, s) = −∞ if s is on a negative-weight cycle and 0 otherwise, we have
s.d ≥ δ(s, s). Therefore, the statement holds for the base case. For the
inductive step, consider relaxing edge (u0, v0). By the inductive hypothesis,
we have that v.d ≥ δ(s, v) for all v ∈ V before the relaxation. Then, by
this relaxation, only v0.d’s value might be changed due to the definition of
relaxation. If it doesn’t change, the statement holds automatically. If it
changes, we have

v.d = u.d+ w(u, v) ≥ δ(s, u) + w(u, v) ≥ δ(s, v)

by applying the triangle inequality and inductive hypothesis. Therefore, the
statement holds.

To show that v.d doesn’t change any more once v.d = δ(s, v). We have
shown above that δ(s, v) is a lower bound for v.d and, by the definition
of relaxation, the estimated weights couldn’t be increased. Therefore, the
value of v.d is monotonically decreasing and doesn’t change any more once
it reaches its lower bound.

Lemma 6 (Convergence property). If path p =< s, v1, ..., u, v > is a shortest
path in G for some u, v ∈ V , and if u.d = δ(s, u) before relaxing the edge
(u, v), then v.d = δ(s, v) after relaxing (u, v).

Proof. After relaxing (u, v), we have

v.d ≤ u.d+ w(u, v) = δ(s, u) + w(u, v) = δ(s, v)

by the definition of relaxation and Lemma 3. Then, by the upper-bound
property, we have v.d ≥ δ(s, v), which indicates the equality that we are
looking for.

Lemma 7 (Path-relaxation property). If path p =< s, v1, ..., vk > is a short-
est path from s to vk, and we relax the edges of p in the order (s, v1), (v1, v2),
..., (vk−1, vk), then vk.d = δ(s, vk). This property holds regardless the occur-
rence of other edge relaxations.

Proof. We prove this lemma by induction: This lemma is equivalent as
showing that after the i-th edge of path p is relaxed, we have vi.d = δ(s, vi).

19

For the base case i = 0, this is the situation before any edges of p have
been relaxed and we have, as initialized, s.d = 0 = δ(s, s). By the upper-
bound property proven above, we know that s.d always equal to 0 after
initialization no matter how the edges are relaxed.

For the inductive step, we assume vi−1.d = δ(s, vi−1). Then, by the
convergence property proven above, after relaxing this edge, we have vi.d =
δ(s, vi), which was to be shown.

Lemma 8 (No-path Property). If there is no path from s to v, then we
always have v.d = δ(s, v) =∞

Proof. By the upper-bound property (Lemma 5), we have that∞ = δ(s, v) ≤
v.d. Therefore, v.d =∞ = δ(s, v)

4.2 Bellman-Ford algorithm

It’s obvious from the aforementioned properties that by repetitively relaxing
every edge in the graph, the estimated shortest path weights are monotoni-
cally decreasing until reaching the lowest possible value, which is the actual
shortest path weights.

The Bellman-Ford algorithm uses this approach to solve the single-source
shortest-path problem. However, this strategy will fail when there is a
negative-weight cycle as the path could traverse the negative-weight cycle
for arbitrarily many times. Therefore, the Bellman-Ford algorithm employs
a check that runs through all the edges after all relaxations and, if there is a
pair of vertices that can still be optimized, it would return False to indicate
that there is a negative-weight cycle (it returns True if and only if there is
no reachable negative-weight cycle).

The pseudo-code for the Bellman-Ford algorithm is shown in Algorithm
3, and its run-time complexity is O(|V ||E|) where |V | stands for the number
of vertices in V and |E| stands for the number of edges in E.

It might be noticeable that the Bellman-Ford algorithm relaxes all edges
by exactly |V | − 1 times. We would prove why |V | − 1 times is sufficient in
the following lemma, and use it to prove the correctness of the Bellman-Ford
algorithm.

Lemma 9. For weighted, directed graph G = (V,E) with source vertex
s ∈ V and weight function w : E → R. If there is not negative-weight cycles
reachable from s in G, then, after relaxing all edges by |V | − 1 times, we
have v.d = δ(s, v) for all v reachable from s.

20

Algorithm 3 Bellman Ford(G, w, s)

Initialize Single Source(G, s)
for i = 1 to |G.V | − 1 do

for each edge (u, v) ∈ G.E do
Relax(u, v, w)

end for
end for
for each edge (u, v) ∈ G.E do

if v.d > u.d+ w(u, v) then
return False

end if
end for
return True

Proof. Let v be any vertex reachable from s and let p =< v0, v1, ..., vk >
be any shortest path from s to v (i.e. v0 = s and vk = v). A shortest
path doesn’t contain duplicated edges, so p has at most |V |−1 edges, which
means k ≤ |V | − 1. Then, as the i-th iteration relaxes the edge vi−1, vi for
i = 1, 2, ..., k, we get v.d = vk.d = δ(s, vk) = δ(s, v) by the path-relaxation
property (Lemma 7).

Theorem 11 (Correctness of the Bellman-Ford algorithm [4]). Consider
a weighted, direct graph G = (V,E) with source s and weight function w :
E → R. The Bellman-Ford algorithm would return True if G doesn’t contain
negative-weight cycles reachable from s, then for all v inV we have v.d =
δ(s, v), and the predecessor subgraph Gπ is a shortest-paths tree rooted at s.
If G contains a negative-weight cycle, then the algorithm would return False.

Proof. Suppose that G doesn’t contain any negative-weight cycles reachable
from s. Lemma 9 above proves that at termination, v.d = δ(s, v) for all
vertices v ∈ V that’s reachable from s. As for the vertices that’s not reach-
able from s, v.d = δ(s, v) follows from the no-path property (Lemma 8).
Therefore, we have that at termination, v.d = δ(s, v) for all vertex v ∈ V .

Then, we show that the algorithm would return True if there are no
reachable negative-weight cycles. From the result above, we have

v.d = δ(s, v) ≤ δ(s, u) + w(u, v) = u.d+ w(u, v)

by triangle inequality (Lemma 4). Therefore, none of the if tests in the
Bellman-Ford algorithm will return False, and it would therefore return

21

True.

As for the case that G contains reachable a negative-weight cycle from
source s. Let’s say that the negative-weight cycle is c =< v0, v1, ..., vk >
where v0 = vk, and

k∑
i=1

w(vi−1, vi) < 0

Let’s prove that the algorithm will return False by contradiction. Assume
that the Bellman-Ford algorithm would return True, which means vi.d ≤
vi−1.d+ w(vi−1, vi) for i = 1, 2, ..., k. This implies

k∑
i=1

vi.d ≤
k∑
i=1

(vi−1.d+ w(vi−1, vi))

=
k∑
i−1

vi−1.d+
k∑
i=1

w(vi−1, vi)

Since vo = vk, so we have

k∑
i=1

vi.d = vi−1.d

Also, because the negative-weight cycle c is reachable from s, so each vi.d is
finite for i = 1, 2, ..., k. Therefore,

0 ≤
k∑
i=1

w(vi−1, vi)

which contradicts with the assumption that c is a negative-weight cycle.
Therefore, the Bellman-Ford would return False, which completes the proof.

4.3 Dijkstra’s algorithm

Another commonly used algorithm in solving the single-source shortest path
problem is the Dijkstra’s algorithm. Though Dijkstra initially proposed the
algorithm to find the shortest path between two vertices [8], its variant
is used to find the shortest paths from a fixed source vertex to all other

22

vertices and produce a shortest-path tree [4]. Different from the Bellman-
Ford algorithm, Dijkstra’s algorithm solves the single-source shortest path
problem on a weighted, directed graph G = (V,E) where all the edges have
a non-negative weight (i.e. the weight function is w : E → [0,∞)). As the
random variable τe assigned to each edge in our first passage percolation
model is non-negative, we can take advantage of this non-negative weights
restriction of Dijkstra’s algorithm to get a better running time compared to
the Bellman-Ford algorithm, which will be shown later.

From our previous discussion in the properties of relaxation and repeat-
ing relaxation on all edges, it might be noticeable that, roughly speaking, the
vertices closer to the source would achieve their shortest-path weight earlier
than the farther ones (and we took advantage of this fact to prove the cor-
rectness of the Bellmen-Ford algorithm (Theorem 4)). The key idea in the
Dijkstra’s algorithm is to maintain a set S of vertices whose shortest-path
weights from source vertex s are already determined. The algorithm repeat-
edly chooses the vertex u ∈ V − S with the minimum estimated shortest
path weight u.d, adds u to S, then relaxes all outgoing edges leaving u.

In the following algorithm (Algorithm 4), we use a min-priority queue Q
to keep all the vertices in V −S, keyed by their v.d values. The Extract Min
method is the standard method that removes the smallest object in the
min-priority queue.

Algorithm 4 Dijkstra(G, w, s)

Initialize Single Source(G, s)
S = ∅
Q = G.V
while Q 6= ∅ do
u = Extract Min(Q)
S = S ∪ {u}
for each vertex v ∈ G.adj[u] do

Relax(u, v, w)
end for

end while

It’s important to notice that Dijkstra’s algorithm always takes the vertex
with the smallest estimated shortest-path weight, which is a greedy strategy.
However, as a fundamental fact in search algorithms, we know that greedy
strategies do not always yield the optimal solution. Therefore, in order to
show the correctness of Dijkstra’s algorithm, it’s essential to show that for

23

each u extracted from Q, we have u.d = δ(s, u).

Theorem 12 (Correctness of Dijkstra’s algorithm (Theorem 24.6 in [4])).
Dijkstra’s algorithm, run on a weighted, directed graph G = (V,E) with non-
negative weight function w and source s, terminates with u.d = δ(s, u) for
all vertices u ∈ V .

Proof. To show the correctness of Dijkstra’s algorithm, we prove that at the
start of each iteration of the while loop, v.d = δ(s, v) for each vertex v ∈ S.
Then, since all vertices in G.V are added to S, we then get the desired result.

Then, it is sufficient to show that we have u.d = δ(s, u) when u is
added to set S. Once we have that u.d = δ(s, u), the upper-bound property
(Lemma 5) indicates that the equality would hold thereafter, which is the
property that we wanted for the set S (the vertices’ shortest-path weight
from s is determined).

For the initialization phase, we have S = ∅ so it’s trivially true that all
vertex v in S has v.d = δ(s, v).

In the maintenance phase, we prove that in each iteration u.d = δ(s, u)
when u is added to set S by contradiction: let u be the first vertex such that
u.d 6= δ(s, u) when it’s added to S.

Trivially, we have that u 6= s since s is the source vertex and it’s the first
vertex added to S with s.d = delta(s, s) = 0. Then, u 6= s indicates S 6= ∅
before u is added.

Also, if there is no path from s to u, we have u.d = δ(s, u) = ∞ by
initialization and the no-path property (Lemma 8), which is a contradiction
with our assumption that u.d 6= δ(s, u). Therefore, we only need to consider
the case that there are paths from s to u.

Trivially, since there is at least one path, there is a shortest path from
s to u. Let’s call this shortest path p. Note that prior adding u to S, p
connects a vertex in S (which is s) and a vertex in V − S (which is u).
Assume vertex y is the first vertex in p such that y is in V −S, and let x be
y’s predecessor along p, which is in S by the assumption of y. Then, we can
decompose p into to paths: p1 from s to x, from x to y, and p2 from y to u.

We claim that y.d = δ(s, y) when u is added to S. To show this claim,
we make use of the fact that x (y’s predecessor along p) is in S. Since we
assumed that u is the first vertex added to S such that u.d 6= δ(s, u), we
have x.d = δ(s, x) when x is added to S. Then, since y is adjacent to x, so
edge (x, y) is relaxed and the claim follows from the convergence property
(Lemma 6).

24

Now, we can get a contradiction. Because y appears before u along the
shortest path from s to u and all edges have non-negative weights, we have
δ(s, y) ≤ δ(s, u). Therefore

y.d = δ(s, y)

≤ δ(s, u)

≤ u.d, by the upper-bound property

However, u and y were both in V − S when the algorithm chooses u in
Extract min(Q), so we have u.d ≤ y.d. Therefore, by double inclusion, we
have

y.d = δ(s, y) = δ(s, u) = u.d

which is a contradiction with our choice of u (u.d 6= δ(s, u)). Therefore,
we have that, when u is added to S, u.d = δ(s, u) and the equality holds
thereafter.

At termination, we have Q = ∅ (which is the termination condition of
the while loop in the algorithm), which implies S = V since Q = V − S.
Therefore, we have v.d = δ(s, v) for all vertex v in V , which is the desired
result.

As we mentioned previously, Dijkstra’s algorithm runs faster than the
Bellman-Ford algorithm and we can take advantage of it since the random
variables τe for each edge e in our first passage percolation are non-negative.
In the following part, we are going to analyze the running time of Dijkstra’s
algorithm. Note, the following analysis is based on specific implementations
of the min-priority queue, and the result varies if other implementations are
used.

In Dijkstra’s algorithm, it maintains a min-priority queue Q, which is
equal to V −S, and there are three operations: Insert, Extract Min, and
Decrease Key (which is implicit in Relax since the queue may need to
be updated when the estimated weights change during relaxation). For each
vertex, the operation Insert and Extract Min are called exactly once
because vertex are added to the queue at initialization (Q = G.V) and each
vertex is extracted exactly once. Also, because each vertex is added to S
exactly once, each edge in G.E is relaxed once in the for loop that iterates
through G.adj[u] for each u added to S (it’s easier to see by considering an

25

adjacency list implementation of the edges). Therefore, the algorithm calls
Decrease Key at most |E| time.

Then, the question comes down to be how the min-priority queue should
be implemented. An intuitive approach can advantage of the fact that the
size of the queue is known, which is |V |. Then, we can just keep an array
of size |V | and store v.d in the v-th entry of the array. Each Insert and
Decrease Key would take O(1) time, and each Extract Min would take
O(V) time (by searching through the entire array). Therefore, the overall
run time of the algorithm is O(V 2 + E) = O(V 2).

In our first passage percolation model on the square lattice Z2, the graph
is very sparse, and we can take advantage of it. In a more general case, we
consider a graph is sufficiently sparse if E = o(V 2/ log V), and we can im-
prove the run time of Dijkstra’s algorithm by implementing the min-priority
queue with a binary min-heap. Then, the time to build this binary min-
heap is O(V). Each Extract Min and Decrease Key operation would
take O(log V) time. There are |V | Extract Min operations and |E| De-
crease Key operations, which makes the running time O((V + E) log V).
If all vertices are reachable from the source, then the run time is O(E log V)
since every vertex has at least one edge connected to it. This is an im-
provement from the aforementioned straightforward array implementation
if E = o(V 2/ log V) as mentioned.

5 Simulation

Our simulation for fluctuation simulates the first passage percolation model
with exponentially distributed weights on Z2 and was performed on a Mac-
Book Pro with 3.1 GHz Intel Core i5. The reason we use this distribution is
due to the memoryless property of the exponential distribution makes the
generation of the model much faster than the others. Also, we limited the
number of verteices to 9,000,000 (3,000 × 3,000) due to the limitation in
computational power.

Once the weights are assigned to each edge. We used Dijkstra’s algorithm
integrated in the igraph package (library with Python bindings) to compute
the passage time for each vertex. Then, by using a greedy algorithm to
find the smallest passage time among the vertices on the side of the box,
we find the time for the model to hit the sides of the box and denote this
time as t0. The blue plot in Figure 1 is the scatter plot of all the vertices in
{x : T (0, x) < t0}, which is an approximation of the limit shape. It’s easy

26

Figure 1: Approximation of Limit Shape

27

to see that the limit shape is curved and resemble a circle, which is coherent
with Richardson’s result in [16].

Also, we adopted the results from studies in the fluctuation in passage
time to limit the error in our estimation of the time constant. We used

θ̂ =
1

k

k∑
i=1

Ti(0, x)

as an unbiased estimator for ET (0, x). Then, because

Var(T (0, x)) = E[T (0, x)− ET (0, x)]2

and this variance is bounded up by C ||x||1
log||x||1 as in Theorem 7, we have that√

Var

(
T (0, x)

||x||1

)
≤

√
C1

(1 + log||x||1)k||x||1

by choosing appropriate constant C1.

Also, from Alexander’s theorem, we can limit the non-random fluctuation
as following (choosing C2 = 1)∣∣∣∣ET (0, x)

||x||1
− µ(

x

||x||1
)

∣∣∣∣ ≤ C2

√
||x||1log||x||1
||x||1

=
log||x||1√
||x||1

Therefore, by finding the appropriate constants C1 and C2, we can find a
threshold for ||x||1 to ensure a small error ε. As far as we can find, there are
not explicit computation of C1 and C2 in the literature. To obtain explicit
error bounds, we would need to determine these constants in Theorem 7 and
Alexander’s Theorem.

References

[1] Kenneth S. Alexander. “Approximation of Subadditive Functions and
Convergence Rates in Limiting- Shape Results”. In: The Annals of
Probability 25.1 (1997). Publisher: Institute of Mathematical Statis-
tics, pp. 30–55. issn: 0091-1798. url: http : / / www . jstor . org /

stable/2959528 (visited on 11/16/2020).

[2] Antonio Auffinger, Michael Damron, and Jack Hanson. “50 years of
first passage percolation”. In: arXiv:1511.03262 [math-ph] (Sept. 2016).
arXiv: 1511.03262. url: http://arxiv.org/abs/1511.03262 (visited
on 08/28/2020).

28

[3] Itai Benjamini, Gil Kalai, and Oded Schramm. “First Passage Per-
colation Has Sublinear Distance Variance”. In: arXiv:math/0203262
(May 2007). arXiv: math/0203262. url: http://arxiv.org/abs/
math/0203262 (visited on 11/27/2020).

[4] Thomas H. Cormen, ed. Introduction to algorithms. 3rd ed. OCLC:
ocn311310321. Cambridge, Mass: MIT Press, 2009. isbn: 978-0-262-
03384-8.

[5] J Theodore Cox and Richard Durrett. “Some limit theorems for per-
colation processes with necessary and sufficient conditions”. In: The
Annals of Probability (1981). Publisher: JSTOR, pp. 583–603.

[6] Michael Damron, Jack Hanson, and Philippe Sosoe. “Sublinear vari-
ance in first-passage percolation for general distributions”. In: Proba-
bility Theory and Related Fields 163.1-2 (2015). Publisher: Springer,
pp. 223–258.

[7] MICHAEL Damron and NAOKI Kubota. “Gaussian concentration for
the lower tail in first-passage percolation under low moments”. In:
arXiv preprint arXiv:1406.3105 (2013). Publisher: Citeseer.

[8] Edsger W Dijkstra et al. “A note on two problems in connexion with
graphs”. In: Numerische mathematik 1.1 (1959), pp. 269–271.

[9] Bradley Efron and Charles Stein. “The jackknife estimate of variance”.
In: The Annals of Statistics (1981). Publisher: JSTOR, pp. 586–596.

[10] J. M. Hammersley and D. J. A. Welsh. “First-Passage Percolation,
Subadditive Processes, Stochastic Networks, and Generalized Renewal
Theory”. en. In: Bernoulli 1713 Bayes 1763 Laplace 1813: Anniver-
sary Volume. Ed. by Jerzy Neyman and Lucien M. Le Cam. Berlin,
Heidelberg: Springer, 1965, pp. 61–110. isbn: 978-3-642-99884-3. doi:
10.1007/978-3-642-99884-3_7. url: https://doi.org/10.1007/
978-3-642-99884-3_7 (visited on 10/06/2020).

[11] Harry Kesten. “Aspects of first passage percolation”. In: École d’été
de probabilités de Saint Flour XIV-1984. Springer, 1986, pp. 125–264.

[12] Harry Kesten. “On the speed of convergence in first-passage perco-
lation”. In: The Annals of Applied Probability (1993). Publisher: JS-
TOR, pp. 296–338.

[13] Harry Kesten et al. “The critical probability of bond percolation on
the square lattice equals 1/2”. In: Communications in mathematical
physics 74.1 (1980), pp. 41–59.

29

[14] John FC Kingman. “The ergodic theory of subadditive stochastic pro-
cesses”. In: Journal of the Royal Statistical Society: Series B (Method-
ological) 30.3 (1968). Publisher: Wiley Online Library, pp. 499–510.

[15] Thomas M Liggett. “An improved subadditive ergodic theorem”. In:
The Annals of Probability 13.4 (1985). Publisher: Institute of Mathe-
matical Statistics, pp. 1279–1285.

[16] Daniel Richardson. “Random growth in a tessellation”. In: Mathemat-
ical Proceedings of the Cambridge Philosophical Society. Vol. 74. Issue:
3. Cambridge University Press, 1973, pp. 515–528.

[17] DE Wolf and János Kertész. “Noise reduction in Eden models. I”. In:
Journal of Physics A: Mathematical and General 20.4 (1987). Pub-
lisher: IOP Publishing, p. L257.

[18] JG Zabolitzky and D Stauffer. “Simulation of large Eden clusters”. In:
Physical Review A 34.2 (1986). Publisher: APS, p. 1523.

30

