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1 Introduction

In 1965, Hammersley and Welsh introduced first passage percolation as a
model of fluid flow through a porous medium. The general model in the
lattice Zd is defined as follows.
For each nearest-neighbor edge e, assign a value τe to it, called the weight.
The collection of weights is assumed to be i.i.d. with common probability
distribution. A path Γ is a finite or infinite sequence of edges {ei}1≤i≤n in
Zd such that ei and ei+1 share exactly one endpoint. In the finite case, the
length of any path is the number of edges involved and we define the passage
time of Γ to be

T (Γ) =
∑
e∈Γ

τe

Given two points x, y ∈ Zd, the first passage time is given as

T (x, y) = inf
Γ
T (Γ)

where the infimum is over all finite paths Γ that start from x and end at y.
Conversely, the last passage time is

L(x, y) = sup
Γ
T (Γ)

We call

lim
n→∞

L(0, [nx])

n
= µ(x)
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the time constant. Its existence will be proved by Fekete’s Lemma and
Kingman’s Theorem. The time-constant acts as a law of large numbers for
the passage time. In d = 1 case, the existence of the time constant can be
proved using the law of large numbers described in Appendix.
In this paper we focus on the square lattice in Z2 lattice and discuss the
behavior of the limits of last passage time. We are interested in the time
constant or the “average directional speed of fluid-flow”

1.1 Fekete’s Lemma and Kingman’s Theorem

1.1.1 Fekete’s Lemma

Suppose {an}n∈Z+ is a real sequence, and suppose also that the sequence
satisfies the superadditivity property, i.e.,

an+m ≥ an + am ∀ n,m ∈ Z+

Lemma (Fekete’s Lemma)

lim
n→∞

an
n

= sup
n

an
n

where the limit could take value with −∞ and ∞
Proof Let bn = an/n. Suppose sup bn = ∞, then as n approaches infinity,
bn tends to infinity and the lemma holds.
Suppose sup bn <∞. Notice that limbn and limbn exist and that

limbn ≤ limbn ≤ sup bn

Claim that bk ≤ limbn for all k = 1, 2, ....
Fix k ∈ Z+ such that k < n and n = pk + q, then

bn =
an
n
≥ apk + aq

n
≥ pak

n
+
aq
n
≥ pk

n
· ak
k

+
aq
n

Since

lim
n→∞

pk

n
· ak
k

+
aq
n

=
ak
k

= bk

We have
bk ≤ limbn (k = 1, 2, ...)
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But then we have
limbn ≥ sup bn

as limbn is an upper bound for bn.
Since

sup bn ≤ limbn ≤ limbn ≤ sup bn

Then it must be that
limbn = limbn

Therefore,

lim
n→∞

an
n

= lim bn = sup bn = sup
n

an
n

1.1.2 Proposition

For any x ∈ Zd, [nx] refers to be vertex where each coordiante is multiplied
with n. Consider the expectation of the last passage time from the origin to
[nx] for some x, then
Proposition
Let an = E[L(0, [nx])] be a sequence, claim that an satisfies the superaddi-
tivity property, i.e.,

E[L(0, [(n+m)x]] ≥ E[L(0, [nx])] + E[L(0, [mx])]

Proof
Since L(0, [nx]) takes the supremum time among all the paths from 0 to [nx],
it is clear that

L(0, [(n+m)x]) ≥ L(0, [nx]) + L([nx], [(n+m)x])

It follows that

E[L(0, [(n+m)x])] ≥ E[L(0, [nx])] + E[L([nx], [(n+m)x])]

Since the passage time of edges are assumed to be i.i.d., we can shift the
origin to [nx], and thus

E[L([nx], [(n+m)x])] = E[L(0, [mx])]

Consequently,

an+m = E[L(0, [(n+m)x])] ≥ E[L(0, [nx])] + E[L(0, [mx])] = an + am

We have just shown that an is a superadditive sequence.
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1.1.3 Kingman’s Theorem

Since E[L(0, [nx])] is superadditive by above, the Fekete’s Lemma says that

g(x) = lim
n→∞

E[L(0, [nx])]

n
= sup

n

E[L(0, [nx])]

n

exists. The Kingman’s Theorem states
Theorem (Kingman’s Theorem)

lim
n→∞

L(0, [nx])

n
−→ g(x) a.s. and in L1

where a.s. means almost surely and L1 means absolute difference between
two values. Since a.s. law implies convergence in means, we have

lim
n→∞

P

(∣∣∣∣L(0, [nx])− E[L(0, [nx])]

n

∣∣∣∣ > ε

)
= 0

1.2 Periodic Environment

Periodic Environment is the main focus of our work. In such environment,
we define a rectangle, fix its configurations, and extend periodically to all
of Zd. In periodic environment, there is an exact formula for point-to-level
limits which will be introduced later. The limit shape is expected to be a
polygon so we ask:

1. How close between the limit value and the exact formula?

2. What is the number of facets in the limit shape?

3. How small/big the facets are?

1.3 Max-Plus Algebra

Let A be a m×n and B be a n×p real matrix, the usual dot product between
A and B is C = {cij} of size m× p and is given by cij =

∑n
k=1 AikBkj.

Max-Plus Algebra, on the other hand, has different operation rules for addi-
tion and multiplication. In max-plus algebra, we define

a⊕ b = max(a, b), a⊗ b = a+ b
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Briefly speaing, usual multiplication is replaced by addition and addition is
replaced by max operation The dot product of a m×n matrix A and a n×p
matrix B, in max-plus algebra, is then characterized as

[A⊗B]ik =
l⊕

j=1

aij ⊗ bjk

= max
j=1,...,l

{aij + bjk}

2 Point-to-Level Limits and Tilt-Velocity Du-

ality

Let xk be a vertex in the Zd, a path from x0 to xn is denoted as

x0,n = (xk)
n
k=0

For any nearest-neighbor edge (x, xei) in Zd, its potential is defined as

w(x, xei) = τ(x, xei) + hi

where ei is the i-th unit vector and h = (h1, h2, ..., hd) is a non-negative vector
satisfying certain criterion.
On a finite square lattice with size N , consider Σ to be the set of all Γ that
starts from the origin such that |Γ| = N , or equivalently, all paths with
length N . We define

GN(h) = max
Γ0,|Γ0|=N

w(Γ0)

where w(Γ0) is the sum of all potentials of edges contained in Γ0

The point-to-level limit is then defined as

gpl(h) = lim
N→∞

GN(h)

N

Let R denote all the directions that an edge can take and let U be the convex
hull of R, then

gpl(h) = sup
ξ∈U
{gpp(ξ) + h · ξ}

and thus
gpp(ξ) = inf

h∈Rd
{gpl(h)− h · ξ}

where

gpp(x) = lim
N→∞

L(0, [Nx])

N
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3 The model

We introduce a general setting for model in Z2 and then show how the peri-
odic environment is generated.

3.1 General Settings

Let x be a vertex on (Z≥0)2 and is denoted as (i, j) where i and j are non-
negative integers. Construct a directed graph where each x is pointed towards
(i+1, j) and (i, j+1). We assign random positive weights from a distribution
F to each edge.
Let N be the size of the graph, i.e., the number of vertices in a single row or
a single column. Figure 1 shows a sample graph with N = 5 and with F be
a uniform distribution of [0, 1). In the figure, the upper-most and left-most
corner is (0,0) and x increments to the right and y increments downward.

Figure 1: weighted graph with N=5
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3.2 Periodic Settings

In periodic environment, we construct a base square lattice with size m first
and use a periodic formula to fill a larger lattice with size N following the
below procedure

1) Construct a directed square lattice B of size m as defined in Sec. 3.1

2) Extend a directed square lattice G of size N ≥ m based on B

3) Assign each edge in B a weight from a distribution F

4) Each vertex (i, j) ∈ B is identified with

Pi,j = {(i+ pm, j + qm) ∈ G : p, q ∈ Z+}

5) Each outgoing edge from (x, y) ∈ Pi,j is assigned with the same weight as
the outgoing edge from (i, j) along the same direction

A sample graph with N = 6,m = 3 is shown in Figure 2: In the graph above,

Figure 2: periodic graph with N = 6,m = 3

the base square lattice B of size 3 is colored in grey. Each vertex in B has
one horizontal edge and one vertical edge. Take (0, 0) for example, it has
a horizontal edge to (1, 0) a vertical edge to (0, 1). Now (0, 0) is identified
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with (3, 0) and (0, 3). Then we assign the same weight for the edge between
(3, 0) to (4, 0) and for the edge between (0, 3) to (1, 3) as the weight of the
horizontal edge starting from (0, 0). We also assign the same weight for the
edge between (3, 0) to (3, 1) and for the edge between (0, 3) to (0, 4) as the
weight of the vertical edge starting from (0, 0). Other edges are assigned with
weights in a similar fashion.
We now define the weighted adjacency matrix of the periodic graph to be a
m2 ×m2 matrix, denoted as A, where

Aij =

{
w(i, j) if i→ j

−∞ otherwise

Notice that in periodic graph, all vertices have degree 2 by the identification
step in the periodic formula. One condition for a matrix to be irreducible
is that the associated directed graph is strongly connected, meaning any
two vertices are reachable to each other by a finite path. The identification
process also makes A defined above to be an irreducible matrix.
Theorem
An irreducible matrix A has a unique max-plus eigenvalue λ(A)
We then show that

gpl(h) = λ(A)

where A is the weighted adjacency matrix of the periodic graph
For the weighted adjacency matrix of the periodic graph, there is a max-plus
eigenvalue λ with an associated eigenvector σ s.t.

max
j

[Aij + σj] = λ+ σj, 1 ≤ i ≤ N

Inductively,

max
x=x0,x1,...,xn

{ n−1∑
k=0

Axk,xk+1
+ σxn

}
= nλ+ σx, 1 ≤ x ≤ N

The last-passage value can be expressed as

GN(h) = max
x0:n

n−1∑
k=0

w(xk, xk+1) = max
x=x0,x1,...,xn

n−1∑
k=0

Axk,xk+1

Dividing by n gives the limit

gpl(h) = lim
n→∞

n−1GN(h) = λ
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4 Algorithms

4.1 Dijkstra’s Algorithm

Finding the last passage time with positive weights is mathematically equiv-
alent to finding the first passage time with negative weights. Dijkstra Al-
gorithm is the algorithm that seeks to find the first passage time between
each vertex and the source vertex. It repeatedly chooses unvisited nearest
estimated vertex, relaxes all edges leaving the vertex, and mark the vertex
as visited. We denote G to be the graph, G.V to be the vertex set, w to be
the set of edge weights indexed by endpoints, v.π be the parent of vertex v.

Algorithm 1: INITIALIZE-SINGLE-SOURCE(G, s)

1 for v ∈ G.V do
2 v.d =∞;
3 v.π = NULL;

4 end

Algorithm 2: RELAX(u, v, w)

1 if v.d > u.d+ w(u, v) then
2 v.d = u.d+ w(u, v);
3 v.π = u;

4 end

Algorithm 3: DIJKSTRA(G,w,s)

1 INITIALIZE-SINGLE-SOURCE(G,s);
2 S = ∅;
3 Q = G.V ; while Q 6= ∅ do
4 u = EXTRACT-MIN(Q);
5 S = S ∪ {u};
6 for v ∈ G.Adj[u] do
7 RELAX(u, v, w);
8 end

9 end
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Running Time
Dijkstra’s algorithm implicitly calls INSERT in building Q, DECREASE-
KEY in RELAX, and explicitly calls EXTRACT-MIN operations. Each IN-
SERT and DECREASE-KEY operation takesO(1) time while each EXTRACT-
MIN operation takes O(V ) time where V is the number of vertices. Notice
that RELAX is called at most E times where E is the number of edges
since the sum of the number of adjacent vertices in the graph is equal to
the number of edges in directed graph, then DECREASE-KEY is called at
most E times. Now we loop over all the vertices and for each vertex we
call EXTRACT-MIN once, the running time is then O(V 2). Together with
DECREASE-KEY operation, the total running time is O(V 2 +E) = O(V 2)

since E ≤ V (V−1)
2

= V 2 − V ≤ V 2 in a directed graph. The running time
could be improved using a binary min-heap when the graph is sufficiently
sparse. A binary min-heap is a binary tree such that each node has smaller
key than the keys of its children. If we implement a min-heap in the algo-
rithm, each EXTRACT-MIN takes O(log V ) time and the running time for
the EXTRACT-MIN operation considering the loop through all the vertices
is then O(V log V ). Each DECREASE-KEY now takes O(log V ) time. The
time to build the heap is O(V ) so the total running time for the improved
algorithm is then O((V +E) log V ). Since all vertices are reachable from the
source, the running time is therefore O(E log V ).

4.2 Karp’s Algorithm

Karp’s Algorithm is one of the algorithms that serve to solve for the eigen-
value problem in Max-Plus Algebra, i.e.λ such that A⊗ v = λ⊗ v.

Algorithm 4: KARP’S ALGORITHM

1 Choose j ∈ n and set x(0) = ej;
2 Compute x(k) = A⊗ x(k − 1) for k = 1, ..., n;

3 Compute λ = maxi=1,...,n mink=0,...,n−1
xi(n)−xi(k)

n−k

where A is the weighted adjacency matrix, n represents 1, ..., n and xi(m)
refers to the i-th element of x(m).
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Example Let

A =


ε 3 ε 1
2 ε 1 ε
1 2 2 ε
ε ε 1 ε


Apply Karp’s Algorithm with j = 1,and consider x(0) = e1 = (0, ε, ε, ε)T .
Since n = 4, there are four iterations and we get

x(1) =


ε
2
1
ε

 , x(2) =


5
2
4
2

 , x(3) =


5
7
6
5

 , x(4) =


10
7
9
7


The mininum values over k are 5

2
, 0, 5

2
, 2 respetively. Then the final result after

taking maximum is 5
2
. The max-plus eigenvalue is numerically equivalent to

the point-to-level limits.
Running Time
Each element of x(k) is calculated from taking maximum of n elements which
takes O(n) time, then calculating each x(k) takes O(n2) time. There are n
such x(k) in total, the running time for the dot product of A and v in
max-plus algebra is thus O(n3). The eigenvalue is calculated by taking the
maximum of the minimum of arrays of elements. Since the max process
and the min process each takes O(n) time, the total running time of Karp’s
algorithm is O(n3 + n2) = O(n3) = O(m6) where m is the size of the base
square lattice.

5 Results

We perform simulations for N = 1000,m = 3, 4, 5, ..., 15 and the results of
four chosen periodicities are shown in Figure 3. Increased number of facets
in the shape could be observed with the increase in periodicities of the graph.
When the period is 3−6, there are roughly 3 facets; when the period is 7-11,
there are roughly 4 facets; and when the period is at least 12, the number of
facets becomes at least 5. The observed pattern showed a moderate to fast
increase in number of facets with most facet changes within h = −0.25 to
h = 0.25
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(a) m = 3 (b) m = 5

(c) m = 7 (d) m = 12

Figure 3: plots of gpl and eigenvalues with different periodicities

6 Appendix

6.1 Weak Law of Large Numbers

Suppose {Xi} are i.i.d. where Xi has cdf f and let Sn = X1 +X2 + · · ·+Xn

to be the sum of the first n terms in the sequence. The Weak Law of Large
Numbers states
Proposition

lim
n→∞

P

(∣∣∣∣Snn − E[X1]

∣∣∣∣ > ε

)
= 0

Proof
Let µ, σ be the mean and standard deviation of Sn/n. Let µx, σx be the mean
and standard deviation of Xi. By Central Limit Theorem,

µ = µx, σ =
σx√
n
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Chebyshev’s inequality states

P

(∣∣∣∣Snn − E[X1]

∣∣∣∣ > kσ

)
≤ σ2

k2
=

σ2
x

nk2

Take k = ε
σ
, then

P

(∣∣∣∣Snn − E[X1]

∣∣∣∣ > ε

)
≤ σ4

nε4

Therefore,

lim
n→∞

P

(∣∣∣∣Snn − E[X1]

∣∣∣∣ > ε

)
= 0
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