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Abstract

Renewal-reward processes are used to provide a framework for the mathematical description of single-
molecule bead-motor assays of motor proteins. The main advantage of using such a formulation is that it
makes available a set of formulae for the slopes of the asymptotes to the cumulants of the bead’s displace-
ment. The formulae relate the chemical reaction rates in the enzymatic cycle and the discrete mechanical
steps of the motor to the slopes of the cumulants. The cumulant’s slopes are commonly measured in bead-
motor assays, the simplest examples being the bead’s steady-state velocity and variance. To establish the
usefulness of these cumulants and their robustness under experimental conditions, two other results are
shown as simple consequences of the renewal-reward formulation. Namely, that mechanical substeps be-
fore the completion of a full-step either forwards or backwards, and initial state of the enzyme do not
have any effect on the long-time slopes of the cumulants. To illustrate the uses of the formulation and
the insight that it bestows, the Elston model and the Peskin-Oster model for kinesin are discussed in some
detail. Then, the shortcomings of the randomness parameter - a function of the cumulants - when there
is a possibility of forward and backward steps is discussed. To illustrate the use of the cumulant formu-
lae, an alternative approach that gives more information than the randomness parameter is discussed about
the motor’s mechano-chemical cycle. To further encourage the use of this approach in bead-motor assays,
the robustness of the approach under experimental error is also tested numerically and shown to be highly
satisfactory.
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1 Introduction
Motor proteins are enzymes that use energy from ATP hydrolysis to produce mechanical work. Different
classes of motor proteins are involved in a variety of biological processes that range from cellular transport
to DNA transcription. Our focus here is on processive enzymes; i.e., those in which ATP hydrolysis is
accompanied by a mechanical displacement. Examples of such enzymes include kinesin, myosin and the
rotary molecular motor F1-ATPase. Note that the actual physiological function of the enzyme is beyond the
scope of this paper.

Motors like kinesin, myosin or RNA-polymerase are usually described as linear, in that they typically
move along linear ’tracks’ made of tubulin dimers, actin filaments or DNA strands (Howard and Clark, 2002)
respectively. These tracks consist of a set of regularly or periodically spaced chemical binding sites. The
motors walk by moving from one binding site to another in a preferred along these tracks. Once ATP binds
to the motor protein, hydrolysis takes place in a sequence of chemical and mechanical processes (Cross,
2004). In one of the processes, the motor protein biases its diffusion in one direction by undergoing a
conformational change (Rice et al., 1999). With the help of thermal fluctuations in the fluid medium, the
motor completes a step by chemically binding to the next binding site on its track. Rotary motor proteins
have similar mechanisms, but hydrolysis is accompanied by rotation of some radial appendage by a certain
angle. For example, the rotation of F1-ATPase is composed of three separate rotations - as described by the
binding change mechanism (Boyer, 1997) - of 120 degrees, each accompanied by the hydrolysis of one ATP
molecule.

Single-molecule experiments on motor proteins focus on several different aspects of the chemical and
mechanical phenomena. Some experiments attempt to determine chemical details of the enzymatic cycle
such as rates, intermediate reactions, etc. (Rosenfeld et al., 2003). Other studies focus on structural aspects
such as the different conformations of the protein and how these help it function (Rice et al., 1999). The
experiments most relevant to the work herein are called bead-motor assays. These focus on the dynamic
aspects of the motor protein’s motion. In such an assay, a sphere of micrometer size is coupled to the motor
in an ATP containing fluid medium. A force is applied to the bead using optical or magnetic tweezers (Gilbert
et al., 1995; Svoboda et al., 1993) and this force, in turn, is transmitted to the motor. Such a force of several
piconewtons is intended to simulate the effect of a cargo on the motor. The bead’s position as the motor walks
is optically measured. A great deal of insight into the enzyme’s chemical cycle has been obtained through the
analysis of the statistics of the bead’s displacement (Block, 2003; Gilbert et al., 1995; Svoboda et al., 1993;
Vale et al., 1996; Visscher et al., 1999).

Motor proteins have lengths of the order of several hundred nanometers and operate in the water-like
cytoplasm. Due to the small size of the motor, the flow around it has a very low Reynolds number. Hence,
the fluid’s inertia may be ignored in the Navier Stokes’ equations, and the familiar Stokes law for the viscous
forces on the motor may be written in terms of a coefficient of friction γ . This coefficient of friction in
Newton’s law for the motor modeled as a point mass m corresponds to a (fast) time-scale of m/γ . In a bead-
motor assay, this time-scale is of the order of fractions of a microsecond even for the micrometer sized beads.
Hence, the effect of the inertia on the dynamics of the bead-motor system is negligible (Krishnan, 2008;
Purcell, 1977). Such dynamics are generally called overdamped.

Their small size also makes them particularly suscebtible to thermal noise; i.e., the influence of collisions
with the fluid molecules. To put the magnitude of these fluctuations into perspective, consider the fact that
kinesin, for example, consumes about 10−100 molecules of ATP per second (Astumian and Haenggi, 2002).
ATP releases about 30 kJ of useful energy per hydrolysis - the reaction’s Gibb’s free energy - and this corre-
sponds to an input power of about 30 ·106/(6.023 ·1023)≈ 10−16 W . In contrast, the order of magnitude of
thermal energy is kBT , and the relaxation time of the collisions is about 10−13 seconds, which gives a thermal
power of 10−8 W . Thus, the thermal fluctuations are nearly 10 times larger than the energy available to drive
the motion. Thus, it is commonly accepted that thermal fluctuations play a significant role in the functioning
of these motor proteins, much like Feynman’s Brownian ratchets.

The motion of motor proteins is modeled on many length and time scales. Continuous, diffusion approxi-
mations with no internal details of the motor’s chemistry or mechanics have been very useful in understanding
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the origin of processivity or directed motion in a random thermal environment (Astumian and Haenggi, 2002;
Bier, 1997). These are referred to as thermal-ratchet models. Models with more detailed chemistry model
the enzyme’s cycle as a Markov process through the chemical states (Qian and L. Elson, 2002) and often
use Elston’s method (Elston, 2000) to analyze the motor’s walk superimposed over the chemistry (Fisher
and Kolomeisky, 2001). Some models incorporate more detailed information from experimental work on
the internal structure of the motor, and combine the diffusive motion and chemical cycle of the enzyme; the
Peskin-Oster model for kinesin is a particularly elegant example (Peskin and Oster, 1995). While thermal-
ratchet models have been successful in illustrating the general physical principles involved in this diffusion
driven transport phenomenon, models that incorporate enzyme chemistry and protein physical structure have
proved more useful in understanding experimental data.

A common assumption in these more fine-grained models is that diffusion is nearly instantaneous com-
pared to the time required for ATP hydrolysis on the time-scale of the experiment. For example, the kinesin’s
chemical turnover time is of the order of hundreds of microseconds even when moving at its fastest veloc-
ity (Visscher et al., 1999). Estimates of the diffusion time-scale for even the large(r) micrometer sized bead
using the low Reynold’s number Stokes Law approximation, is at least three orders of magnitude smaller at
about 0.1 µs. Hence this assumption appears to be easily justifiable.

Under this separation of diffusion and chemical time-scales, the problem gains gains regenerative struc-
ture in a stochastic sense. Each time the enzymatic cycle completes, the motor returns to its original state
(barring a step forwards or backwards); i.e., the proces undergoes a renewal. Not surprisingly, results from
renewal theory have been used very successfully to extract useful information about the chemistry and me-
chanics from bead-motor assays. The experimentally measured randomness parameter (or Peclet number),
for example, has been used to gain more information about the number of rate determining substeps in the
underlying enzymatic cycle (Svoboda et al., 1993). Time-correlation functions of the number of renewals
have been used to obtain higher-order moments of the enzyme’s chemical turnover time (Santos et al., 2005).

However, when backward steps or wasted ATP hydrolysis are present, renewal theory alone is not suf-
ficient. This is because renewal theory is equipped to count only the number of enzymatic cycles that take
place, and cannot take into account the mechanical stepping of the motor1. Backward steps, forward steps
and wasted ATP hydrolyses are essentially mechanical phenomena, even though they may be closely coupled
to the enzyme’s chemical changes. Renewal-reward or cumulative processes are a useful extension of the
renewal process that allows the association of an additional random variable to account for the stepping of
the motor. Importantly, this formulation lets one derive a set of formulae that relate the long-time slopes
of the bead’s cumulants to the moments of the turnover time of the enzymatic cycle, and the superimposed
mechanical steps of the motor. These formulae help one extract a host of statistical information from mea-
surements the bead’s displacement alone. The thesis of this paper is that these cumulants are robust statistical
measurements that can be used to gain valuable insight into the physics of motor proteins.

Section 2 contains a short introduction to renewal theory, renewal-reward processes and a discussion
about Markov chain models for enzymatic cycles. Section 3 describes the renewal reward formulation of
bead-motor assays. Formulae for the cumulants of the bead’s displacement are derived therein. Two simple
propositions that help establish the slopes of the cumulants as robust statistical measures follow. The methods
are then applied to analyze to two models - Elston’s model and the Peskin-Oster model - to illustrate their
use. Due to the ubiquitous use of the randomness parameter in bead-motor assays, Section 4 describes its
use and identifies several of its shortcomings: renewal-reward processes are very well-suited to analyze the
statistical measures like the randomness parameter. An alternative to the randomness parameter that gives
more information about the chemical cycle is suggested: specifically, it is possible to obtain estimates for the
average chemical rate constants, the number of steps in the chemical reaction, the probability of backward
steps and wasted hydrolyses solely by measuring the cumulants of the bead’s displacement, and mapping
these to a simple model.

1This may be taken into account using special formulations, as noted in Section 5
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2 Mathematical Background

2.1 Renewal Theory
2.1.1 Main Results in Renewal Theory

In this section, we review some of the important results in renewal theory for the reader’s convenience.
The following material follows closely the books of (Cinlar, 1975), (Karlin and Taylor, 1975), (Ross, 1983)
and (Grimmett and Stirzaker, 2001).

A renewal process {N(t), t ≥ 0} is a nonnegative, integer-valued stochastic process that registers succes-
sive occurrences of an event during the time interval (0, t]. The time intervals between succesive events are
given by a sequence of positive, independent, identically distributed random variables, {Xk}∞

k=1 where Xk
is the time interval between the (k− 1)th and kth events. Let the distribution function of Xi be F(t). This
distribution is well-behaved and the density exists in most physical problems. It is also usually assumed that
F(0) = 0 and F(∞) = 1, meaning that the renewal takes place in a finite time t > 0 with probability 1 (Karlin
and Taylor, 1975).

Definition (Waiting Time). The random variables {Sn}∞
1 are defined as,

Sn =
n

∑
i=1

Xi, (1)

and Sn is called the waiting time until the occurence of the nth event. There is a natural equivalence between
the sequence of waiting times and the counting process N(t):

P{Si ≤ t}⇔ P{N(t)≥ i}. (2)

Two associated quantities, the renewal function M(t) and the current life δ (t) are variables of interest,
and their definitions are stated below.

Definition (Renewal Function and Excess Time). The renewal function M(t) is just the expected number of
renewals N(t). It can be written in terms of the k-fold convolution Fk(t) of the distribution function F as

E[N(t)] = M(t) =
∞

∑
k=1

Fk(t). (3)

The current life δ (t) is defined as
δ (t) = t−SN(t), (4)

and represents the time elapsed since the last renewal.

Let µ and σ be the mean and variance of Xk, both finite. A version of the strong law applies to SN(t) (Karlin
and Taylor, 1975):

lim
t→∞

1
t

N(t)→ 1
µ

. (5)

Indeed, since the sequence {Xk}∞
k=1 contains identical, independently distributed random variables, a version

of the central limit theorem holds: N(t) is asymptotically normal with mean t/µ and variance σ2t/µ3.
An important result in renewal theory concerns certain integral equations called renewal equations. Their

definition and solution are summarized below.

Theorem 1 (Renewal Equations (Feller, 1968)). Suppose a is a bounded function and F is a probability
distribution function. Then there is a unique solution satisfying the renewal equation,

A(t) = a(t)+
∫ t

0
A(t− x)dF(x). (6)
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The solution is
A(t) = a(t)+

∫ t

0
A(t− x)dM(x), (7)

where M is the renewal function associated with F.

The central theorem in renewal theory has two forms: one is a differentiated form of the asymptotic
relationship (5), and the other is concerned with the renewal equation. They are equivalent.

Theorem 2 (Renewal Theorem (Karlin and Taylor, 1975)). Let F be a non-arithmetic distribution of a pos-
itive random variable X with mean µ . Suppose a is Riemann integrable and A is the solution of the renewal
equation (6). Then,

lim
t→∞

A(t) =
{ 1

µ

∫
∞

0 a(x)dx if µ < ∞

0 if µ = ∞
(8)

The second equivalent statement is,

lim
t→∞

M(t)−M(t−h)
h

=
1
µ

(9)

Suppose a second sequence of independent, identically distributed random variable {Hi}∞
i=1 is associated

with the corresponding sequence of renewal increments {Xi}∞
i=1. Hi is allowed to be dependent on Xi, but the

tuples (Xi,Hi),(X j,H j) are independent for i 6= j. For the rest of the section, it will be assumed the rewards
accumulate at the end of each renewal interval. For the statistical parameters that are of relevance here,
however, it does not matter at what point the rewards accumulate. This will be elaborated on when substeps
are discussed in Section 3. Define the cumulative process R(t) as (Karlin and Taylor, 1975)

R(t) =
N(t)

∑
k=1

Hk. (10)

The expectation of R(t) satisifies the asymptotic relationship

lim
t→∞

E[R(t)]
t

=
E[Hk]
E[X ]

. (11)

2.1.2 Cumulants of the Cumulative Process R(t)

The moments and cumulants of a renewal-reward process can be computed from the moment and cumulant
generating function. As usual, define the moment generating φX (s) function and cumulant generating function
gX (s) of the random variable X taking a countable number of discrete values {λk}∞

0 as

φX (s) =
∞

∑
k=0

esλk P{X = λk}.

g(s) = log(φX (s)).
(12)

The nth cumulant κX ,n is just the nth derivative of gX (s) at s = 0.
To find the cumulants of R(t), fix t at some value and drop ignore it for the following. Let N be a N

valued random variable, let the sequence {Hi}∞
i=1 be as in Section 3 and let R be as in (10). Assume that N is
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independent of each Hi. Then, a standard derivation gives

φR(s) =
∞

∑
k=0

esλk P{R = λk}

=
∞

∑
k=0

∞

∑
n=1

esλk P{R = λk|N = n}P{N = n}

=
∞

∑
n=1

∞

∑
k=0

esλk P{H1 + · · ·+Hn = λk|N = n}P{N = n}

=
∞

∑
n=1

φ
n
H(s)P{N = n}

= φN (log(φH(s))) ,

(13)

where the independence of N and the {Hi} has been used.
The nth cumulant of R(t) can be found by differentiating the logarithm of (13), and expanding the com-

position of functions using Faà di Bruno’s formula (Johnson, 2002) to obtain

dmgR(s)
dsm = ∑

m!
b1! · · ·bm!

g(k)
N (gH(s))

m

∏
i=1

(
g(i)

H (s)
i!

)
, (14)

where the sum is over all m−tuples (b1,b2, · · · ,bm) that satisfy the constraint ∑ ibi = m. Since gX (0) = 0 for
every random variable X , it is clear that κR,n is a polynomial function of the cumulants of N and Hi.

At this point, the parameter t may be reintroduced into N and R to emphasize their dependence on it. Smith
(1958) showed that the cumulants of N(t) satisfy

κN,n(t) = ant +bn +
λ (t)

(1+ t)p , (15)

when the moments upto n + p + 1th order of the renewal increment Xi are finite. It is noted that an,bn are
constants dependent on the first n + 1 moments of Xi, p ≥ 0, and λ (t) is a function of bounded variation
going to zero as t → ∞. When all the moments of Xi are finite, λ (t) = 0. Formulae for the constants an,bn
are available for the first eight cumulants (see Section 4 and Section A.2). Equations (14) and (15) imply that
the cumulative process has the asymptotic form

lim
t→∞

κR,n(t) = cnt +dn (16)

when the appropriate moments of Hi and Xi exist.
It was assumed in (13) that the Hi and N are independent to obtain the cumulant generating function of

R. This, in essence, means that even the (Xi,Hi) pairs are not allowed to be dependent. Formulas are harder
to derive when the dependence of the (Xi,Hi) pairs is allowed for. A formula for the variance when (Xi,Hi)
depend on each other is available. Let µX , µH , σ2

X and σ2
H be the variances and means of Xi and Hi. Let ρ

represent their correlation coefficient. Then, the long-time variance of R(t) takes the form (Smith, 1958)

lim
t→∞

Var[R]
t

=
1

µX

(
σ

2
H −2ρσX σH

µH

µX
+

σ2
X

µ2
X

µH

)
. (17)

However, this assumption of independence will not be overly restrictive when formulating motor protein
dynamics as a renewal-reward process. This, as will be seen in Section 2.2, Section 3 and Section A.1, is
because of the usual Markov process formulation of the enzyme’s chemical cycle.
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Figure 1: General first passage scheme based on Elston (2000)

2.2 Chemical Cycles and Markov Processes
Qian and L. Elson (2002) were the first to observe that the theory of Markov processes lends itself easily
to the study of chemical cycles of single-molecule enzymes. Their model is inspired mainly by the fact
that the times at which a single enzyme molecule encounters reactant molecules (e.g., ATP) in the medium
are independent of each other and hence are Markovian events. Subsequent reactions like hydrolysis must,
intuitively, depend on when they started, and a Markovian assumption may no-more be valid. To make such
problems tractable, the most common approach is to approximate the distribution by a sum of exponentially
distributed random variables; i.e., to model the single non-Markovian step as a set of artificial Markovian
stages (Cox and Miller, 1977).

Following Elston (2000), for the enzymatic cycle of a motor protein that consumes ATP and goes through
n−1 distinct intermediate states (labeled with the integers), a general sequential scheme can be written as

2

k21�������� k23

�=======

1

k12

@�������

k1n

�>>>>>>> 3

n
kn1

_>>>>>>>

,

where ki j denotes the rate of the reaction from state i to j and dotted lines represent the intermediate reactions
between states 3 and n. Concentrations of ATP and by-products like ADP and Pi may be incorporated into
the rate constants as multiplicative factors by assuming an appropriate reaction order.

The time required for the enzyme to cycle through all its states - the turnover or cycle time - is of primary
interest. Although the directionality of the cycle is usually fixed by setting one or more backward rate con-
stants to zero, a cycle may be considered to be complete if the the enzyme starts from state 1 and returns there
after going through all the forward reactions or backward reactions at least once. That is, it takes one of the
two paths from 1 to 1̄ in Fig. 1, where the primed states have been artifically created to distinguish between
forward and backward cycles. This cycle time for a single enzyme may be modeled as a first-passage time
in a Markov chain/process. The standard approach to finding a first-passage time from state i to state j in a
Markov chain is to make state j absorbing by setting all outward rate constants from state j to zero (Cox and
Miller, 1977). In Fig. 1 state 1̄ is absorbing.

Let X(t) be the Markov process taking values in {1, . . . ,n,2′, . . . ,n, 1̄}, as in Fig. 1. Let pi j = P{X(t) =
i|X(0) = j} and let T be the first-passage time from state 1 to 1̄. Since P{T ≤ t} = p11̄(t), the objective is
to find p11̄. Let Q be the transition matrix of the Markov chain. Collect the pi1̄ into a vector P, order the
elements in P by adjacency starting with either p2′1̄ or pn1̄, and notice that p1̄1̄(t) = 1. Then, p11̄(t) can be
dropped from the equations. The transition rates into state 1̄ from states n and 2′ are included as the first
and last elements in vector B. Suppose also that we have some initial probability distribution on these states
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assembled into a vector C. To be consistent, the initial probability distribution at t = 0 will have to be on
either the states in the forward half of the cycle or on the backward half, not both. Then the Kolmogorov
backward equations for the Markov process can be written as

dP
dt

= QP+B,

y = CT P,
(18)

where the superscript T represents the transpose and y gives the output; i.e., the distribution function of the
first-passage time T . P, i B and C are 2n− 1 dimensional vectors, y is a scalar and Q is a 2n− 1× 2n− 1
matrix.

One will note that this looks suspiciously like a state-space formulation of a control system - it is tempting
to suggest that such a formulation makes available the wide range of tools in control theory2. Take the Laplace
transform of (18) and denote the transformed quantities with an asterix in the superscript. Then, the moment
generating function of T is the transfer function G(s) of the system, and can be written as

E[e−sT ] =
∫

∞

0
e−st dp11̄

dt
dt = sy∗(s)

= sG(s) = CT (sI−Q)B.

(19)

In general, it is desirable to distinguish between these two (or more) pathways. One way to do this in the
system defined above, would be to simply split the absorbing state into 1̄b and 1̄ f . Then, the probabilities
of absorption p11̄ f

and p11̄b
can be found separately by dropping the either the first or last element from B

in (18). Indeed, in this case P{T ≤ t} = p11̄b
+ p11̄ f

. When formulating the bead-motor assay as a renewal-
reward process, it will sometimes be necessary to distinguish between the backward and forward cycles
(see Section 3.4.1).

There remains the question: is the first passage time identical if one assumes that the process starts in
state i instead of state 1? While this seems intuitively obvious, it requires proof - a short one is presented
in Section A.1. The proof hinges on conditioning on the path the system takes to the absorbing state. A
well-known consequence is that absorption into a particular absorbing state is independent of the time of
absorption. This will help justify the independence of Hi and Xi in Section 3.

2Note, for example, that one may also form observability and controllability matrices. In this particular problem, if one lets O =
{C,CA,CA2,CA3,CA4} be the observability matrix and fix n = 3, one can show (by direct calculation) that the rank of Ois3, although
the transition matrix Q is 5×5. This is intuitive, since the extra states 2′ and 3′ were artificially constructed.
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3 Renewal Reward Formulation of Bead-Motor Assays
Suppose Xi is identified with the turnover time for the enzymatic reaction and the associated rewards Hi with
the physical steps taken by the motor. The cumulative reward R(t) represents the net distance travelled by
the motor. Then, for example, identification of motor’s steady-state velocity with the limiting of E[R(t)]/t
in (11) follows immediately.

To allow for mechanical substeps during the renewal interval, a terminal reward H̃(t) is included in the
cumulative process R(t), and the corresponding cumulative reward process R̃(t) can written as

R̃(t) = R(t)+ H̃(t). (20)

For instance, the terminal reward may be defined in terms of the current life δ (t). The current life represents
the time elapsed since the previous renewal, and whether a substep takes place or not is intuitively dependent
on how long the motor is waiting in its current state. To make ideas concrete, consider a linear motor with a
step size of length L and uniform substep size of Ls (forwards or backwards). A substep may be defined to
have a taken place if a certain fixed time ts has elapsed since the last renewal, where p and q represent the
probabilities of stepping forwards or backwards. Then,

H̃ =
{

L̃s with probability p ·P{δ (t) > ts}
−L̃s with probability q ·P{δ (t) > ts}.

(21)

A commonly found definition in the literature is restated for use in subsequent sections.

Definition (Additive Function of a Random Variable). Let µi be the moments of a random variable X . A
function V (X) = f (µi1 , · · · ,µin) from Rn→R of a finite subset of the moments of X is said to be an additive
function if, for two independent random variables X and Y ,

V (X +Y ) = V (X)+V (Y ). (22)

The cumulants are such additive functions. As is well known, for n≤ 3, the cumulants are just the central
moments. The rates of increase of the central moments (like the velocity and variance of the bead’s position)
and functions of these (like the randomness parameter) are commonly measured parameters in bead-motor
assays (Guydosh and Block, 2006; Svoboda et al., 1993; ?). As will be seen in the next few sections, the
appropriate generalization is to consider the all the cumulants of the bead’s position.

3.1 Substeps
The existence of substeps in kinesin’s walk has been a subject of debate for the past decade and many different
substep sizes and durations have been reported in the literature (Block, 2007). It has also been argued based
on experimental data that substeps of duration greater than 30 µs do not exist (Carter and Cross, 2005). It
will be shown that that substeps (specifically their size), whether they exist or not, do not have any effect on
the bead’s velocity and in general, the rates of increase of the bead displacement’s cumulants.

Proposition 1 (Substep information is lost in the cumulants). Let V (R(t)) be some function of the moments
of the cumulative process R(t) satisfying the additivity property. Let R̃(t) include a terminal substep H̃(t)
as in (20) and let limt→∞V (R(t))/t exist. In addition, let V (H̃(t)) be bounded, and let H̃ be independent of
every Hi. Then,

lim
t→∞

V (R(t)
t

= lim
t→∞

V (R̃(t))
t

(23)

Proof. Trivially,

lim
t→∞

∣∣∣∣V (R(t))−V (R̃(t))
t

∣∣∣∣= ∣∣∣∣V (H̃(t))
t

∣∣∣∣= 0, (24)

using independence, additivity and the finiteness of V (H̃).
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By setting H̃ = HN(t)+1, this result implies that it does not matter at what point in the renewal interval
the reward accumulates - this is a standard result (Cox and Miller, 1977; Smith, 1958). The more important
observation is that in the rates of increase of all the cumulants of R(t), substep information is absent. This
result has been seen in particular scenarios. For example, Tsygankov et al. (2006) present a set of methods
to gain insight about the underlying chemical cycle by assuming that individual (sub)steps can be resolved in
the assay. They observe that the formula for the velocity is unaffected by how the substeps are counted. Our
simple result extends this observation to the slopes of all the cumulants.

3.2 Initial Conditions Fade
Another consequence of the renewal reward formulation of the motor protein’s walk is the intuitive result that
the initial state of the enzyme does not affect its steady-state velocity (and in general, the rates of increase of
the cumulants). There has been some debate about the necessity of including the equilibrium probabilities as
initial conditions in the Markov chain describing the enzymatic cycle (Elston, 2000; Fisher and Kolomeisky,
2001). The standard result on the delayed renewal process (Karlin and Taylor, 1975) is used here to show
that this assumption is unnecessary, and that regardless of initial conditions, the slopes of the cumulants
are the same. This result has been seen in particular applications like Wang’s derivation of the randomness
parameter (Wang, 2007).

Proposition 2 (Delayed Renewal-Reward Process). Let the renewal-reward pairs (Xk,Hk) continue to be
independent, but let only {X2,X3, . . .} and {H2,H3, . . .} be identically distributed. Let X1 and X2 have distri-
bution functions G and F respectively. Let MD be the expectation of the number of renewals; i.e., the delayed
renewal function which includes all the renewal and reward increments, and let M be the renewal function
associated with the distribution F alone. Similarly, define RD and R by excluding the first renewal-reward
pair for the latter. Let V be an additive function of the moments, and let limt→∞ V (R)/t exist and equal some
finite constant L. Then, MD(t) satisfies the renewal theorem (9) and

lim
t→∞

V (R)
t

= lim
t→∞

V (RD)
t

= L. (25)

Proof. The proof uses a standard tool called the renewal argument. This begins by conditioning on the time
of the first renewal X1. Note that,

E[N(t)|X1 = x] =
{

0 if x > t
1+M(t− x), if x≤ t , (26)

and use the fact that MD(t) = E[E[N(t)|X1 = x]] to find

MD(t) = G(t)+
∫ t

0
G(t− x)dM(x). (27)

This is a standard result. Then, the self-same renewal argument can be applied to V (RD) and V (R) to obtain

V (RD(t)) =
∫

∞

0
V (RD(t)|X1 = x)dG(x)

=
∫ t

0
V (H1 +R(t− x))dG(x)

= V (H1)+
∫ t

0
V (R(t− x))dG(x),

(28)

where the additivity property of V and the independance of H1 and R(t) has been used. Again, following a
standard procedure, divide (28) by t, take the limit and split the integral on the right hand side into two parts
to obtain

1
t

∫ t

0
V (R(t− x))dG(x) =

∫ t/2

0

V (R(t− x))
t

dG(x)+
∫ t

t/2

V (R(t− x))
t

dG(x). (29)

10



Now, note first that both V (R(t− x))/t and G and are bounded and converge to limits L and 1 as t→ ∞, and
second that G is positive and nondecreasing. Then, we may use the mean value theorem of integration to
state that there exists τ1 in (0, t) for the first integral and τ2 in (t/2, t) for the second integral such that,

1
t

∫ t

0
V (R(t− x))dG(x) =

V (R(t− τ1))
τ1

G(t/2)+
V (R(t− τ2))

τ2
(G(t)−G(t/2)). (30)

Taking limits, it is clear that the first term in (30) converges to L, and the second goes to 0.

3.3 Cumulants Revisited
To derive the useful cumulant formulae in Section 2 it was assumed that the (Hi,Xi) pairs were independent.
This assumption is easily justified if the Hi and Xi are generated from an underlying Markov chain. That is,
suppose the Markov chain has n states of which r < n are absorbing. Then, Xi is modeled as a first-passage
time problem to one of these r absorbing states as in Section 2.2. The reward increment Hi may be then said
to take values in {λk}r

k=1, depending on which state the process is absorbed into. Then, Hi is well-defined if
and only if the renewal takes place at some finite time. The probability of being absorbed into a particular
state given that renewal has taken place, however, is independent of the actual time of absorption. In an
irreducible Markov chain with absorption states, any process that begins in a transient state is absorbed in a
finite time with probability 1 (Karlin and Taylor, 1975). Then, we can write

P{Hi = λk ∩Xi = t}= P{Hi = λk|Xi = t < ∞}P{Xi = t}+P{Hi = λk|Xi = ∞}P{Xi = ∞}
= P{Hi = λk}P{Xi = t},

(31)

and the assumption that Hi and Xi are independent is justified.
It is not necessary, of course, that the renewal and reward increments always have to be generated by

an underlying Markov process as indicated above. It just appears to the authors that this will be the most
commonly encountered situation, and their independence can be justified using the arguments above. Hi and
Xi may very well arbitrarily be constructed to be independent, like in Section 4.

Given this independence assumption, the cumulants of R(t) as t→∞ take the form in (16). Since formulas
for the intercepts dn are known and can be written in terms of an, bn in (15) and the cumulants of Hi, it appears
that it can be used to gain additional information about the underlying mechano-chemical cycle. However,
this intercept is corrupted with information from the initial chemical state of the enzyme and substeps. To
demonstrate this, let R̃(t) be as in (20). Using (13), the cumulant generating function gR̃(s) can be related to
the cumulant generating function gR(s) as

gR̃(s) = gR(s)+gH̃(s). (32)

Since the moments of Hk (as we have defined it) are constants independent of time, it is clear from Prop. 1
that the asymptote to R(t) can differ from R̃ only by a constant; i.e., they have different intercepts.

Initial conditions have a similar effect. Since the experiment may capture the motor in the middle of a
substep, the initial reward will be different from the subsequent ones; i.e., H1 is not identical to Hk for k > 1.
If it is assumed for simplicity that the initial renewal increment is not different, it follows that

gR̃(s) = gR(s)+gH1(s)−gH(s) (33)

There seems to be no simple way of finding the initial condition of the enzyme or the size of the substep.
Hence, it may be concluded that the intercept is not as reliable a parameter as the slope of the asymptote.
However, if individual (sub)steps can be resolved in the experiment (like in Carter and Cross (2005)), the
intercept might become more useful.

11
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Figure 2: State diagram for Elston’s model for n = 3 from (Elston, 2000).

3.4 Examples
To illustrate the use of the renewal-reward formulation, it is applied to two existing models: namely, the
Elston model (Elston, 2000) and the Peskin-Oster (PO) model (Peskin and Oster, 1995). Elston’s model is
a Markov process formulation for any motor protein undergoing a cyclic chemical reaction. The PO model
was developed specifically for kinesin. The essential difference between the two in terms of renewal-reward
processes is mainly in their approach to the reward function. Elston considers the rewards to be related only
to the chemical cycle. In contrast, the rewards in the PO model depend on mechanical diffusion and the
chemistry. The PO model is especially interesting since it helps illustrate at what time- and length-scales the
physical approximations are made to model the bead-motor assay as a renewal-reward process. Some of their
results are recaptured herein and insights gained using the renewal-reward formulation are discussed.

3.4.1 Elston’s Kinetic Model

It is common to embed the discrete steps of a motor protein in a continuous “envelope” dynamics, and analyze
the motion of the motor as a Brownian ratchet (Astumian and Haenggi, 2002; Bier, 1997; Prager et al., 2005).
That is, the probability density of the motor’s position p(x, t) is described by an equation of the form,

De f f
∂ 2 p
∂x2 − v

∂ p
∂x
− ∂ p

∂ t
= 0, (34)

where De f f is the effective diffusion coefficient and v is the average velocity of the motor. These transport
properties tell us how effective the motor is in conducting unidirectional transport.

Elston’s model shows how these transport properties can be related to an underlying chemical cycle.
In the model, there are n chemical states, and an integer valued random variable N(t) which keeps track
of which binding site the motor is at. The state diagram from (Elston, 2000) is reproduced for the readiers’s
convenience. The motor steps forwards or backwards when the corresponding sequence of chemical reactions
take place. Let pn,i represent the probability of being in chemical state n and binding site i. The (infinite) set
of evolution equations for the pn,i(t), the Kolmogorov forward equations or Fokker-Planck equations, can be
conveniently represented in matrix form (Van Kampen, 2007). Then, expressions for the first two cumulants
of N(t) can be found in terms of the rate constants of the underlying chemical cycle and related to v and De f f .

The special case of the model for n = 3 is considered here, and cast as a renewal-reward process. The
procedure for general n is identical. There is an intuitive regenerative structure. Suppose the enzyme starts
in state 1. Whenever it returns to 1 after going through all the other states (2,3, . . . ,k), a renewal takes place.
There are three ways in which this can happen, and each of these ways is associated with a backward step, a
forward step, or a wasted step. Construct the appropriate absorbing states as shown in Fig. 3 to calculate the
first passage times Xi and reward increments Hi.
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Figure 3: To find the first passage time and reward function. The absorbing states have been indicated with
a double circle. Absorption into states with the subscripts b, f and w determines whether a backward step,
forward step or wasted hydrolysis takes place.

Define the vectors P, y and the matrices Q,B,C as in Section 2.2 to find the first passage time - with of
course, the appropriate modifications to include the reaction rates k′13 and k′31. Then, as before, the moment
generating function of the first passage time is just the transfer function of the Laplace transformed set as
in (19). The definition of the reward function Hi is,

Hi =

 L if absorbed into 1b
0 “ 1w
−L “ 1 f

. (35)

To find the kth moment of the reward function E[Hk], condition on absorption occuring in the infinitesimal
time interval (τ,τ + dτ)3. Since p11b(t) is the distribution function of the first passage time given absortion
into state 1b takes place, the probability that absorption into state 1b takes place in (τ,τ +dτ) is just p′11b

(τ)dτ .
Then, one obtains

E[Hk] = Lk
(∫

∞

0
p11 f (τ)dτ +(−1)k p11b(τ)dτ

)
= Lk(p11 f (∞)+(−1)k p11b(∞)).

(36)

Finding p11 f (∞) and p11b(∞), as noted in Section 2.2, is just a matter of writing B in (18) as B1 f = k21δ1i or
B1b = k31δ7i, where δi j is the Kronecker delta function. Then, find the limit as s→ 0 of sG(s) in (19) (with
the appropriate B) to obtain p11 f (∞) and p11b(∞).

Elston states solutions for the velocity and diffusion coefficient - the slopes of the mean and half the
variance of R(t) - only for the case where the backward rates k21, k32, and k′13 are zero. This simplifies the
algebra considerably since backward steps are no longer possible. The same is done here. Since the chain
has no backward rates, the first passage time is just a sum of exponentials, and the mean and variance (µ and
σ ) take the form

µ =
1

k12
+

1
k23

+
1

k31 + k′31
,

σ
2 =

1
k2

12
+

1
k2

23
+

1
(k31 + k′31)2 .

(37)

In this special case, it is easier to find p11 f (∞) and p11b(∞) using the path decomposition described in Sec-
tion A.1. First notice that the cycle completes only through state 3; i.e., 3 is the last state prior to absorption

3With backward chemical reactions present, it is hard to find the probabilities of absorption into particular states using the path
decomposition in Section A.1 since the possible paths to absorption are too numerous.
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into either 1b or 1 f . Then it is clear from (60) that

p11 f (∞) =
k31

k31 + k′31
. (38)

The variance of R(t) can be found using its generating function in (13) since Hi is independent of Xi
(see Section A.1 and Section 2.2. Nevertheless, it is illuminating to consider the more complicated expression
in (17) and show that the correlation coefficient it is zero. The numerator of the correlation coefficient can be
written as

E[HX ]−E[X ]E[H] = L
(∫

∞

0
t p′11 f

(t)dt− p11 f (∞)
∫

∞

0
t(p′11 f

(t)dt + p′11w(t)dt)
)

. (39)

But the first term on the right hand side of (39) is

∫
∞

0
t p′11 f

(t)dt =
∫

∞

0

p′11 f
(t)

p′11 f
(t)+ p′11w

(t)
t(p′11 f

(t)+ p′11w(t))dt. (40)

From the structure of (19), it is clear that the Laplace transform of pix, where x is either 1b or 1 f can be
written as

p∗i1 f
(s) = f (s)k31,

p∗i1w(s) = f (s)k′31.
(41)

Due to the linearity of the Laplace transform, it follows that

p′11 f
(t)

p′11 f
(t)+ p′11w

(t)
=

k31

k31 + k′31
, (42)

and from (39) and (38) it follows that the correlation coefficient is zero.
It is just a matter of substitution and algebraic manipulation to verify using (11) and (17) that the expres-

sions for velocity and the effective diffusion coefficient are identical to those obtained by Elston. The velocity
is

v =
k12k23k31

k23(k31 + k′31)+ k12(k23 + k31 + k31)
, (43)

and using the variance of reward process from (17) the diffusion coefficient is

De f f = lim
t→∞

E[R(t)2]−E[R(t)]2

2t

=
1
2

(
p2

11 f
(∞)

σ2

µ3 +
(p2

11 f
− (∞)p11 f (∞))

µ

) (44)

3.4.2 The Peskin-Oster Model

The Peskin-Oster model is a one-dimensional model developed specifically for kinesin. It describes experi-
mental data obtained in bead-motor assays (Gilbert et al., 1995). The model is of interest because the reward
function here depends on the chemistry and mechanical diffusion, in contrast to Elston’s formulation. This
makes it interesting to recapitulate the physical assumptions that have to be made to analyze the model as a
renewal-reward process. To this end, a more-than-brief description of kinesin and the PO model is provided,
and it is then cast as a renewal-reward process.

Kinesin is a motor protein that walks along track-like structures called microtubules (MTs) in cells. It
has two heads made of globular proteins; most of its mass is concentrated here. These heads are connected
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to each other through string-like structures called neck-linkers. A long tether connects the point of joining
of the neck-linkers to the cargo. MTs have regularly spaced chemical binding sites. Kinesin’s heads have
chemical binding sites for both MTs and (ATP). Kinesin walks by alternately detaching and reattaching its
heads from the MT. It derives the energy required for this process from ATP hydrolysis.

The model describes kinesin’s chemical cycle as follows: kinesin starts with both heads bound to the
MT. ATP binds to one of these heads, following which either the forward head or backward head detaches.
Once one of the two heads detaches, it undergoes a conformational change that is modeled as a “power-
stroke” (Rice et al., 1999); i.e., it undergoes a diffusion in the fluid medium along with the bead in a potential
biased towards the forward MT binding site. ATP hydrolysis takes place simultaneously with the power-
stroke. Once the hydrolysis completes, the diffusing head regains its affinity for the MT and binds to the
nearest site nearly instantaneously. The process of ATP binding and either leading or trailing head head
detachment is quantified by the rate constants βb and β f respectively. ATP hydrolysis takes place with a rate
α .

To model the mechanical diffusion, the tether attached to the bead and the two neck linkers are modelled
as linear, elastic springs and the heads and bead are modelled as point masses. There are two distinct states of
the kinesin molecule: one in which only one head is diffusing while the other is bound, and a second in which
both heads are bound to the MT (waiting for an ATP molecule to bind). Let xb represent the bead position,
let x be the free head location, let xbnd be the position of the bound head, and let f be the external force on
the bead. Each time the motor steps, the position variables are translated by ±L, the distance between the
binding sites. The potential energy of the system in the two states can then be written as

φ1( f ,xb) = f (xb− xh)+
1
2

Kth(xb− xh)2,

φ2( f ,xb,x) = f (xb− xh)+
Kth

2
(xh− xb)2 +W (xh− xbnd),

(45)

where the xh = (xbnd + x)/2 and W (x) denotes an interaction potential that biases the diffusion of the head
towards the forward binding-site (the power-stroke). Following Atzberger and Peskin (2006), the interaction
potential is modeled as W (x) = 1/2Kbias(x− x0)2.

To solve for the moments of the bead’s displacement, two critical time-scale separations in Peskin and
Oster (1995). First, since the bead is nearly 1000 times larger than each of the heads, its diffusion coeffi-
cient is proportionally smaller and the heads diffuse that many times faster than the bead. Hence one may
assume that in the over-damped, low Reynolds number environment of the cell that the diffusing head is in
mechanical equilibrium with the bead at all times. Second, they argue that the diffusion of the bead itself may
be considered to be many times faster than the chemical rates, and diffusing times are insignificant on the
time-scale of the experiment. To be more precise, the bead relaxes to its equilibrium density nearly instanta-
neously. These two time-scale separations allow them to calculate the probabilities of binding forwards p( f ),
once the hydrolysis completes. When formulating this as a renewal-reward process, the diffusion of the bead
during the hydrolysis phase may be viewed as a substep, and may be ignored (see Prop. 1). But it is necessary
to account for bead diffusion when both heads are bound to MT. Hence this assumption is elaborated on.

Since φ1( f ,xb,xh) is quadratic in xb, the stochastic differential equation describing the diffusion is in the
form of the Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930). That is,

dXb(t) =
Kth

γ
(Xb− xeq)dt +σdWt , (46)

where σ = 2γkBT is the noise intensity, γ = 6πµR is the friction coefficient given by Stokes’ law for a sphere
in a low Reynolds number flow, xeq is the equilibrium position of the bead in the potential given in , and Wt
is the standard Wiener process. It can be shown with the help of the Maxwell-Boltzmann distribution that
σ = 2γkBT , where kB is the Boltzmann constant and T is the absolute temperature. Given Xb(0) = x0, the
Fokker-Plank equations may be solved to find the mean and variance of the bead as a function of time (Cox
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Figure 4: The state transition matrix to find the moments of the first passage time and reward function in the
PO model. As in Fig. 3the states absorption into 1 f , 1b or 1w indicates that a forward step, backward step or
wasted hydrolysis has taken place. Notice that if two successive transitions take place, renewal is complete;
i.e., the number of possible paths is finite.

and Miller, 1977) as

E[Xb(t)] = xeq + x0e−Ktht/γ ,

Var[Xb(t)] =
kBT
Kth

(1− e−2Ktht/γ).
(47)

It is also know that Xb is Gaussian. Then, Xb(t) relaxes to a normal distribution with mean and variance
given by the long term limits of (47), in a time-scale of γ/Kth. Kth may be obtained from physical estimates
or even from a careful analysis of bead-motor assays (Atzberger and Peskin, 2006), and this turns out to be
around 1.5 10−4N/m. Using an average bead size of 1 µm and a friction coefficient γ ≈ 10−8Ns/m, gives a
time scale of around 10−5s. Since kinesin’s velocities are around the 100 nm/s, the chemical time is at least
two orders of magnitude greater. Hence it may be assumed that Xb is normally distributed in the state when
both heads are bound with mean and variance given by the long time limits (47).

Kinesin’s chemical cycle in the PO model; i.e., the renewal increments Xi, is a sum of two exponen-
tially distributed random variables. It consists of the waiting time for ATP binding and the time for ATP
hydrolysis. 4. The reward increment can be written as,

Hi =


L with probability βb

βb+β f
p( f )

0 “ βb
βb+β f

(1− p( f ))+ β f
βb+β f

p( f )

−L “ β f
βb+β f

(1− p( f ))

+Y (48)

where Y represents the displacement of the bead diffusing in the potential given by (45). The equilibrium
position of the bead depends only on which binding site the motor is at. Thus, the mean of Y may be assumed
to be 0 in (47); i.e., it amounts to a constant translation of the coordinates and will not affect the slope of the
asymptote. Y is independent of Xi under the time-scale separation, and its higher cumulants are identically
zero since it is normally distributed.

The PO model displays substeps. The size of the substeps is dependent on the external force, as can
be seen from (45). For the Markov process calculation in Peskin and Oster (1995), the substep is set to be
uniformly L/2. Although it is not immediately noticeable in the equations for the moments, it is reassuring to
note that this substep size does not end up appearing in the expressions for the bead’s velocity and the variance
in Peskin and Oster (1995). Figure 4 shows a Markov chain that can be used to calculate the first-passage
time and probabilities for the reward function. In the PO model, the total number of paths to absorption is
finite and the chemical process is cyclic. As in Section 3.4.1, the first passage time is the same whether the
cycle is considered to start from state 1 or state 2, and Hi is independent of Xi. With the reward and renewal

4One can argue that the hydrolysis may have a more complicated distribution, and may be better approximated by the “method of
stages” Section 2.2
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increments defined, it is just a matter of applying (11) and (16) again to find expressions for the asymptotic
velocity and rate of increase of the variance of the bead. The expressions obtained are identical, and are
omitted for the sake of brevity.
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4 The Randomness Parameter and an Alternative Approach

4.1 The Drawbacks of Using the Randomness Parameter
The randomness parameter or the inverse of the Peclet number has seen ubiquitious use in the analysis of
bead-motor assays since its description in Svoboda et al. (1993). It is commonly defined as,

r = lim
t→∞

Var[xb(t)]
E[xb(t)]L

, (49)

where L is the uniform step length of the motor. Recalling the discussion (in Section 3.3) on the slopes and
intercepts of the cumulants of a renewal-reward process used to represent a bead-motor assay, it seems clear
that it is beneficial to exclude the effect of the unreliable intercept. Hence, the randomness parameter is better
defined as,

r = lim
t→∞

Var[xb(t)]
t

t
E[xb(t)]

1
L

. (50)

When wasted chemical cycles and backward steps are not allowed and the motor steps uniformly forward,
the randomness parameter is very useful. Suppose the chemical cycle of the enzyme can be approximated by a
set of n Markovian steps with rate constants {λ1,λ2, . . . ,λn}. Then the cycle time or the renewal increment Xi
is just a sum of n independent exponential random variables. Let λmin, λmax be the minimum and maximum
rate constants. Then the following inequality holds (Santos et al., 2005):

1
n

λmin

λmax
≤ rN =

∑
n
i=1

1
λ 2

i

∑
n
i=1

(
1
λi

)2 ≤ 1, (51)

where we have used rN to highlight that the randomness here is of just the renewal process alone. The
cumulative process does not need to be considered since the motor steps inexorably forwards.

If, however, even wasted hydrolyses are present - i.e., the reward Hk can take the value 0 with non-zero
probability - (51) does not hold. This was anticipated by Svoboda et al. (1993) when the parameter’s use was
originally suggested. If backward steps are included, its failure is dramatic. To see this, let Xi be as above and
define Hi as in (48), but with the probabilities of stepping forward and backward replaced by p and q. Here, it
just needs to be asserted that Hi is independent of Xi. Then the moments of Hi are just E[Hk

i ] = L(p+(−1)kq).
Since the rewards are independent of the Xi by assertion, (17) is easy to apply and the randomness parameter
of the cumulative process rR can be written as

rR =
p+q
p−q

+(rN−1)(p−q) (52)

Using the bounds for rN in (51), the bounds of rR can be obtained as

0≤ (p+q)− (p−q)2

p−q
≤ rR ≤

p+q
p−q

. (53)

When p and q are close to each other - for e.g., when the motor is close to stall - rR may become really
large. Another special case to consider is when there are no backward steps q = 0, but p < 1. In this case,
1− p≤ rR ≤ 1.

In Guydosh and Block (2006) and Visscher et al. (1999), the randomness parameter is greater than one
(and rising fast, as in Fig. 5a) close to stall and at low ATP concentrations. Like in the PO model, ATP
concentration and the force applied to the bead both affect p and q. This fact might, for instance, be used
to argue for the existence of backsteps. However, this argument is no longer valid when backward chemical
reactions become significant; i.e., when the ATP concentration is low, backward reactions may have rate
constants similar to the forward reactions, and inequality (51) no longer applies. At saturating ATP, both of
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p . Figure (a) shows variation with different rN values. Note how rR

values become nearly identical as the values of p and q approach each other. Figure (b) shows the singularty
at p = q. Clearly, this occurs when the velocity of the motor is zero.

the remaining two possibilities remain equally likely: close to stall, the external force may either affect the
probability of binding forwards during the diffusing phase or it may directly affect the chemical cycle. Indeed,
it is conceivable that both may be occuring simultaneously. Hence it is desirable to be able to quantify the
effects of ATP concentration and load on both the rate of the chemical cycle and the probabilities of stepping
backwards and forwards.

While the randomness parameter might, conceivably, help indicate the existence of backsteps, it loses its
original purpose in their presence. Figure 5 shows that the measured randomness deviates significantly from
the randomness of the underlying chemical cycle. It has been seen in experiments (in which individual steps
are resolvable) that the ratio of backward to forward steps varies from 10−4 at high ATP concentrations and
low loads to 10(!) close to stall.

4.2 An Alternative Approach
It is desirable to obtain an estimate for the number of rate determining steps in the enzyme’s chemical cycle,
the approximate average rate of each of these steps, and the probabilities of binding forward and backward.
Given measurements of bead position - and its cumulants - the randomness parameter, in essence, fits it to a
model. This model assumes that the motor steps uniformly forwards and that the chemical cycle is Erlang
distributed with parameters n and λ . The model to which the bead experimental data will be mapped to will
henceforth be referred to as the test model.

Clearly, this model is insufficient if backward steps and wasted chemical cycles are considered. Instead, if
more information is obtained by measuring the slopes of the higher moments of R(t), more complex models
may be considered. To account for this, a reward function Hk which accounts for forward, backward and
wasted steps may be considered along with the sequential chemical cycle. Now there are four unknowns in
the model: λ , n, and the probabilities p and q. Then, it is reasonable to assume that the first four slopes of
the cumulants of the bead’s position are enough to determine these parameters uniquely.

The constants an in (15) are needed. The first eight values are available in Smith (1959), and the first four
are given in Section A.2 (with a small extension). For the test model with the Erlang distributed Xi, ai = λ/ni

in general. While this result is hard to see from (72), and (70), there is an intuitive way of deriving this using
the properties of the Poisson process and Proposition 1 (see Section A.2). The cumulants of the test model
can be calculated using (13). Let the experimentally measured slopes of the first four cumulants be si. The
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resulting set of equations are stated in full for completeness:

s1 = λ

(
p−q

n

)
,

s2 = λ

(
(p+q)− (p−q)2

n2 +
(p−q)2

n

)
,

s3 = λ

((
p−q

n

)3

+
3(q(1−q)+ p(1+2q)− p2)

n2 +
1−3q+3p+4pq+2p2 +2q2

n

)
,

s4 = λ

((
p−q

n

)4

+6
(p−q)2((p−q)2− (p+q))

n3 +

7(p+q)2−18(p+q)(p−q)2 +11(p−q)4−16pq
n2 +

−6(p−q)4 +12(p−q)2(p+q)−7(p+q)2 +16pq+(p+q)
n

)
.

(54)

The four polynomial equations in (54) may be solved numerically in general. To illustrate this fitting proce-
dure, it may be applied to the PO and Elston models. That is, the cumulants for both of these models may be
obtained separately and plugged into (54).

As a check, the cumulants for the PO model were obtained using the methods of renewal-reward processes
and compared with those obtained using the Markov process formulation in Peskin and Oster (1995). As
noted in Section 3.4.2, the renewal increment of the PO-model is a sum of two exponentials with rates α and
βb + β f . So, it is reasonable to expect that n should be in the vicinity of 2, and that λ should be close to
the average of the two rates. It turns out that for this special case, λ and n take exactly those values. The
analytical result was guessed at by examining numerical solutions for particular values of the constants. The
full solution is

n = 2,

λ =
α +βb +β f

2
,

p =
4p( f )αβb

(α +βb +β f )2 ,

q =
4(1− p( f ))αβ f

(α +βb +β f )2 ,

(55)

where, as before, p( f ) is the force-dependent probability of stepping forwards.
The results are different for special case of the Elston model considered in Section 3.4.1. The set of

four equations may be reduced to two, but the analytical solution of these simultaneous cubic equations in
n and λ is not worth examining, as we believe no further insight can be gained from doing this. However,
it may be tested in a certain restricted sense to reassure ourselves that the method works satisfactorily: the
forward rate constants k12, k23 and k31 were fixed to certain arbitrary values, and the reverse rate k′31 was
varied over a range. Equations (54) were solved numerically to obtain n, λ , p and q. The results are as
expected: n is close to 3 over the entire range, λ is the close to the average of the rate of chemical turnover
(k12 +k23 +k31 +k′31)/3, and importantly q is 0, which indicates that there are no backward steps in the cycle.
The randomness parameter, in contrast, tells us that there are about 1.3 steps in the cycle and nothing more.
The results are shown in Fig. 6.

To demonstrate the robustness of the procedure in the presence of experimental error, artificial errors are
introduced into the slopes of the cumulants. k′31 was first fixed at 9.2, and 1000 separate sets of uniformly
distributed errors (±10%) were added to each of the four slopes. Of course, it’s not reasonable to expect an
exact solution will make sense under an arbitrary perturbation such as this. Instead, the Euclidean norm of
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Figure 7: The values of the rate constants in Elston’s model for n = 3 were fixed, as in Fig. 6 and k′31 = 9.2.
Errors in a ±10% range were added to the four slopes, and λ , n, p and q were solved for. Figure 7a shows a
histogram of the n values obtained. All the values fall in the (2.6,3.4) interval. Figure 7b shows the variation
of λ with n; λ appears to vary linearly with n. Figure 7c shows that most of the q fall in a (−10−3,103)
interval. Although the negative values are inadmissible, this a strong indicator that there are no backward
steps.

the set of four residuals of Eqs. (54) was minimized. The n values had a mean of 2.988 and a sample variance
of 0.12. The residual had an upper bound of about 10−14. A histogram for n, the residuals and other results
are shown in Fig. 7. These results show that the proposed approach works very well.
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In practise, such a simple chemical scheme might not work very well. Instead, one might consider a serial
scheme with forward and reverse reactions; i.e., one that has two additional consants µ and m representing
the overall rate and order of the reverse reactions. Such simple serial schemes have been considered be-
fore (Fisher and Kolomeisky, 2001; Tsygankov et al., 2006). With two new parameters, six equations have to
be considered. Rather than applying it to an existing model, this procedure may more fruitfully be tested in an
actual experiment. The authors believe that quantifying the effects of ATP and external force on λ , µ, n, m, p
and q will prove particularly insightful.
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5 Outlook and Conclusions
Renewal reward processes are particularly well-suited to extracting cumulants from underlying Markov mod-
els. It is easy to build simple models like those in Section 4.2 fit these to experimental data. However, since
the details of the underlying chemistry and physics are embedded in a cycle-time variable Xi and associated
reward increments Hi, it has its drawbacks. In detail, these are,

• One of the major advantages of using cumulants of the bead’s displacement is that it is not really
necessary to be able to resolve individual steps. However, when individual steps can be resolved, the
methods herein must be supplemented by other approaches to gain more information and insight (Fisher
and Kolomeisky, 2001; Santos et al., 2005; Tsygankov et al., 2006).

• Detachment and reattachment phenomena result in the loss of regenerative structure; it appears that
their inclusion into the renewal-reward analysis is not trivial. It is conceivable that the possibility of
detachment may be included by assuming that there is a nonzero probability that renewal does not
complete in finite time; i.e., it is a “terminating” renewal process (Karlin and Taylor, 1975). Of course,
by considering the entire underlying Markov model, methods in Elston (2000); Mogilner et al. (2001)
may be used to understand these phenomena.

• Independence between the reward increments and the renewal increments Xi cannot be assumed in
general. However, if Xi and Hi are appropriately generated from an underlying Markov chain, the
simplifying assumption of independence can be made. Consider the the situation where there are two
possible chemical reactions with rates λ+ and λ− respectively. Suppose a forward step takes place if
the λ+ reaction takes place and a backward step if λ− takes place. Then one may suppose that the
turnover time Xi may be represented as

Xi =
{

Exp[λ+] with probability p
Exp[λ−] with probability q (56)

where Exp[λ ] is the exponential distribution with rate λ . Associate with this a reward increment Hi
which takes the values 1 and −1 according as whether a forward or backward step has taken place.
Then, (

P{Xi ≤ t ∩Hi = 1}= p(1− e−λ+t)
)

6=
(
P{H = 1}P{X ≤ t}= p(p(1− e−λ+t)+q(1− e−λ−t)

) (57)

except for a few special values of p,q and t. If however, a single step enzymatic cycle based on a
Markov chain is constructed,

ONMLHIJKGFED@ABC1b ?>=<89:;1
λ+

//
λ−

oo ONMLHIJKGFED@ABC1 f ,

the arguments in Section A.1 may be used to show Hi and Xi are independent. Indeed, one may directly
observe that

P{Xi ≤ t ∩Hi =±1}=
λ±

λ−+λ+
(1− e−(λ++λ−)t) = P{Xi ≤ t}P{Hi =±1}. (58)

If this independence does not hold, (13) cannot be used to derive formulas for the cumulants; the more
complicated expression in (17) must be used to take the correlation of Hi and Xi into account. Formulas
for the higher cumulants do not appear to be available.

• Renewal reward process are applicable when motion takes place in one dimension, where the regen-
erative structure is more obvious. Multi-dimensional effects like those in (Block, 2003) are harder to
capture.
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The analysis based on renewal-reward processes must be supplemented with usual methods of Markov
chain analysis to overcome these drawbacks. On the other hand, renewal reward processes are easily adapted
to handle other periodic situations (time and space) where regenerative structure in the problem can be ex-
ploited. To elaborate,

• If some variable in a bead-motor assay fluctuates spatially with a period equal to some rational multiple
of the binding-site separation, the regenerative structure of the problem can still be exploited (in theory).
For example, consider the PO model with an external force of the form f (x) = Asin(xPi/2L) + f0,
where f0 is a constant and L is the distance between binding sites. This force affects only the diffusion
and the probability of binding forwards; it doesn’t change the cycle time. By the force’s periodicity,
there must be two probabilities of binding forwards p0, p1. These can be calculated using the methods
in Peskin and Oster (1995).

(p1,q1) (p0,q0) (p1,q1)

· · · • • • ��������•
−1 0 1 2

Figure 8: Simple periodic random walk. State 2 is an absorbing barrier.

Although a renewal-reward process formulation can be constructed, it is easier to just consider the
simple random walk with an absorbing barrier at state 2 as shown in Fig. 8. Then, the first passage
time to the absorbing barrier gives us the renewal increments Xi. It needs to be ensured that the renewal
takes place in a finite number of steps with probability 1. Absorption into state 2, given the process
starts in state 1, is certain if

p0 p1 ≥ q0q1.

The calculation is based on a simple extension of the “single absorbing barrier” problem in a simple
random walk Cox and Miller (1977). Some details are given in Section A.4.

• This involves the definition of an initial-time dependent renewal increment and renewal function. The
methods in Prager et al. (2005) are well suited to this purpose.

To conclude, renewal-reward processes are used in this paper to analyze the bead-displacement time-trace
in single molecule bead-motor assays of motor proteins. The approximations involved in reducing this to such
a process are justified by appealing to the physics at the length and time-scales in question. General insight
about the influence of substeps and initial conditions is given. When the renewal increments (the cycle time
of the enzyme) and the reward increment (the associated mechanical step) are generated by a single Markov
model, formulas for calculating the cumulants to arbitrary order is given. Then, a method of fitting simple
models to experimental data using the cumulants of the bead-displacement time-trace is presented. This
approach is shown to yield more information about the underlying chemistry than previously used statistical
measures like like the randomness parameter. Its robustness in the presence of error is demonstrated.
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Figure 9: Section of Fig. 1 showing the forward path alone. The rate k21 has been set to zero to prevent
absortion from state 2′ into state 1̄; this would result in the completion of a backward cycle. Solving a first
passage problem on this Markov chain, given that the process starts in state 1, helps one find FTf (t), the
distribution function of Tf .

A Appendix

A.1 Path Formulation of Chemical Cycles
The result discussed in this subsection is not essential to the thesis of this paper and appears to be a special
case of a more general result in Markov chains. The proof is worth repeating due to its simplicity in the case
of cyclic chemical schemes. For the purposes of this paper, it is not necessary to consider the problem in all
its generality.

Consider the chemical scheme described in Section 2.2. The first-passage problem formulated in Fig. 1
is called a 1→ 1̄ form of the problem, for obvious reasons. The objective is to show that the first passage
time is identical, whether the chemical cycle is formulated as 1to1̄ problem, or as a n→ n̄ problem. To show
this, it is first shown that the first-passage time can be found by conditioning on the particular path a system
takes. This is a rearrangement of the Chapman-Kolmogorov equations for Markov chains; nevertheless, it’s
interesting to proceed purely from first-principles.

Absorption through the forward path and absorption through the backward path are mutually exclusive
events. Then, if T is the first-passage time in the 1→ 1̄ problem, we can write P{T leqt} = P{Tf ≤ t}+
P{Tb ≤ t}, where Tx is the first-passage time through the forward or backward path for x = f ,b respectively.
Then, restrict attention to the forward half of Fig. 1 with N states as shown in Fig. 1. Let FTf (t) be the
distribution function of the first passage time through the forward path alone. Let ri,n represent some path of
length n, where the index i is used to distinguish between paths of the same length. It is clear that the path
can be represented by a sequence of rate constants ui = kmn as

ri,n ≡ {u1,u2, . . . ,un}, (59)

and the probability that path ri,n is chosen can be written as

P{ri,n}=
n

∏
p=1

kip jp

∑
n
q=1 kipq

. (60)

Let FTi,n represent the density of the first passage time, given that absorption took place through path ri,n.
Note that once a particular sequence of reactions; i.e., a path is specified in this reaction, the conditional first
passage time is just a sum of exponentials. It seems intuitive that FTf (t) can be conditioned on the path taken
to absorption, and written in terms of the FTi,n .

Lemma 1. The series,

FTf (t) =
∞

∑
n=N

∑
i

P{ri,n}FTi,n(t) (61)

is convergent (pointwise in [0,∞)).

Proof. The proof has two parts: the first estimates the number of possible paths to absorption, and the second
bounds the CDF of the first-passage time given it takes a path of a certain size. Given these two observations,
the inner sum in (61) can be bounded and the outer sum can be shown to be convergent.
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Notice first that when all the reverse rates in Fig. 9 are zero, there is only one path to absorption starting
from state 1 and that path has length N. If one reverse reaction is allowed, additional paths of length N +2r,
r ∈ N become available. For example, the process can step back once along the reverse reaction, forward
again and continue inexorably forwards to absorption to form a path of length N + 2. Each time the process
“doubles back” on itself, it chooses one of the k reverse reactions. Combinatorially, there are kr paths of
length N +2r. Then, the number of paths of length M (denoted by lM)

lM =
{

kr M = N +2r
0 otherwise for r = 0,1, · · · . (62)

Second, consider some path of length M, with rate constants {λ1,λ2, . . . ,λn}. Then the probability den-
sity, F ′Ti,n

, as mentioned earlier, is the convolution of M exponential distributions. Let these M exponentially
distributed random variables have densities and distributions ρ(λi, t) and p(λi, t) respectively, and let their
sum have density and distribution ρ(t) and p(t). Since the convolution is a product under a Laplace transform
tion, it is follows that

p∗(s) =
ρ∗(s)

s

= sM−1
M

∏
i=1

p∗(λi,s)

≤ sM−1 p∗(λ0,s)M,

(63)

where λ0 represents the maximum of the set {λ1,λ2, . . . ,λn}. The last inequality in (63) follows from the
fact that if λ1 ≤ λ2, p∗(λ1, t) ≤ p∗(λ2, t). The distribution function of a sum of M independent, identically
distributed, exponential random variables is usually written in terms of the incomplete gamma function as
γ(M,λ t)/(M−1)!. Then,

p(t)≤
∫ t

0
xM−1e−λ0tdt ≤ (λ0t)M−1

(M−1)!
. (64)

Let a be the maximum probability of taking a particular reaction given the process is in a state from which
multiple paths can be taken. That is

a = supi, j

{
ki, j

∑
N
j=1 ki j

∥∥∥∥∥ ki j

∑
N
j ki, j

6= 1, i, j ∈ {1, · · · ,N}

}
. (65)

Then using (64), (62) and (65), the series in (61) can be bounded by a geometric series

0≤
∞

∑
r=0

kr

∑
i

P{ri,N+2r}FTi,N+2r(t)≤
∞

∑
r=0

krar (λ0t)N+2r−1

(N +2r−1)!
(66)

Using the usual ratio test, the geometric series is pointwise convergent for any t ∈ [0,∞), and it is follows by
comparison that the series for FTf (t) converges.

By conditioning on paths, it is easy to show that the first-passage time is invariant under cyclic permu-
tations of the states and rate constants. Consider now the first-passage problems m→ m̄ and n→ n̄, where
m 6= n. Restrict attention to the forward paths to absorption alone; an identical argument can be applied to the
backward paths. Let ri,l ≡ u1,u2, . . . ,ul be a path in the m→ m̄ problem. Clearly, u1 = km j, and ul = km−1m,
where j is arbitrary. Let uk be the first rate constant in ri,l of the form kn−1n. Since it is the forward path,
this k must exist, and k 6= l. Then, construct the path r̄i,n ≡ {uk+1, . . . ,uN ,u1, . . . ,uk}. This a valid path in the
n→ n̄. This transformation is clearly one-one and implies that there is a one-to-one correspondence between
the terms in the series in (61) for the m→ m̄ and n→ n̄. It’s clear that the two first-passage times are identical.
It has recently been brought to our attention that these and other issues are addressed in greater generality
and detail by Wang and Qian (2007).
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Another critical observation that follows from this path decomposition is that the probability of absorption
into a particular absorbing state, given that absorption has taken place, just the probability of taking one of
the possible paths to that absorbing state. This probability is just the sum of the probabilities of taking each
individual path, since these are mutually exclusive. From (60), it is clear that this probability is a constant
independent of the time of absorption. Hence any reward increment Hi whose value depends only on which
state the process was absorbed into is dependent only on that fact that absorption has occurred at some finite
time, and not on the time itself. Since absorption takes place with probability 1 in a finite time, this justifies
the assumption that the (Hi,Xi) pairs are independent (also see Section 3.3).

A.2 Formulas for Cumulants of a General Renewal Process
To find formulas for the constants ai and bi in (15) Smith (1959) finds the cumulants ψn(t) of a function of
N(t) which has a moment generating function given by

Φ(η) = E
[

1
(1−η)N(t)+1

]
.

Then, ψn(t) has the form
ψi(t) = αit +βi +λ (t). (67)

where λ (t)→ 0 as t→ ∞ as described in Section 2.1.2.
Let µn be the nth moment of the renewal increments Xi, and let its distribution function be F . For the first

n moments of Xi to be finite, a necessary and sufficient condition, is that there exists another distribution F(k)
such that

F∗(s) = 1−µ1s+
µ2

2!
s2−·· ·+ µn−1

(n−1)!
(−s)(n−1)+

µn

n!
F(k)

∗(s). (68)

If z1(η) is the solution of F∗(s) = 1−η such that z1(0) = 0, αi can be written as

αi =
n!

2πi

∮
C′

z1(η)
ηn+1 dη , (69)

and the constants an can be written in terms of αi as

a1 = α1,

a2 = α2−α1,

a3 = α3−3α2 +α1,

a4 = α4−8iα3 +7α2 +α1.

(70)

The first eight values for αs are given in (Smith, 1959), but µ1 is set to 1. For the formulas to hold, the
appropriate moments of F have to be finite, and hence F has a representation as in (68). Then, setting µ1 = 1
is equivalent to a coordinate transformation s̄ = sµ1 in (68). Let F̄(s̄) = F(s), and let the quantities associated
with F̄(s̄) be ᾱi, z̄1, and µ̄i for i > 1. Then, it follows that

z̄i(η) = zi(η)

µi =
µ̄i

µ i
1

for i > 1,

ᾱi =
α

µ1
.

(71)
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The first four formulas for the αi from Smith (1959) become

α1 =
1
µ1

,

α2 =
µ2

µ3
1
,

α3 =
−µ3

µ4
1

+3
µ2

2

µ5
1
,

α4 =
µ4

µ5
1
−10

µ2µ3

µ6
1

+15
µ3

2

µ7
1
.

(72)

A.3 Cumulants of a Renewal Process with an Erlang Distributed Increment
Let N(t) be the renewal process with renewal increment Xi that corresponds to a single exponential variable
with rate λ - this is the well understood Poisson process (Ross, 1983). The moment generating functions of
the Poisson process φN(z) is given by,

φN(z) =
∞

∑
i=0

exp(−λ t(ez−1)). (73)

Since the cumulant generating function ψN(z) = log(φN(z)), the slopes of the cumulants N(t) are all λ .
The objective is to find the cumulants of the renewal process N̄(t) with Erlang distributed increments with
parameters k and λ ; this is a sum of k exponential random variables with rate λ . Then

N̄(t) =
[

N(t)
k

]
, (74)

where [·] denotes the greatest integer function. Associate a cumulative process R(t) with N(t) that has in-
crements Hi = 1/k and a terminal reward H̃(t) = [N(t)/k]−N(t)/k. The terminal reward subtracts out the
“excess” steps in N(t), and the number of renewals in N̄(t) is the same as the value R(t). Prop. 1 states that
the terminal reward has no effect on the cumulants of, and hence the terminal reward H̃(t) can be dropped
from R(t). It follows from (10) that R(t) = N(t)/k, and using a standard property of cumulants, one obtains

κR,n(t) =
κN̄,n(t)

kn , (75)

A.4 Periodic Simple Random Walk
This is based on a standard method (Cox and Miller, 1977) for a simple random walk in one-dimension with
one absorbing barrier at a > 0. For the periodic problem in Section 5, Fig. 8, it is noted that if the process
begins in state 0, it will be absorbed into state 2 if it is first absorbed into state 1 and subsequently into state
2. Since the steps of the random walk are independent, the first passage time into state 2, given the process
starts in state 0 is the sum of the first passage times from 0→ 1 and 1→ 2. More formally, let Xn be an
integer valued random variable that represents the position of the random walk after n steps, and suppose that
X0 = 0. Let,

fn = P{Xm < 1(m = 1, · · · ,n−1),Xn = 1},
and let

F(s) =
∞

∑
i=0

fisi (76)

be its probability generating function. Let the random variable N f take values in N and represent the prob-
ability of absorption in that many steps. If A01 represents the event that absorption into 1 takes place, given
the process starts at 0,

F(s) = P{A01}E[N f |A01].
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Similarly, gn ,G(s), Ng, and A12 be the corresponding variables for absorption into state 2 given the process
starts in state 1 (X0 = 1). It is clear that the probability generating functional for the first passage time into
state 2, given the process starts in state 0 is just F(s)G(s). Conditioning on the first step, the following
simultaneous equations for F(s) and G(s) can be obtained:

F(s) = p0s+(1− p0−q0)F(s)+q0sF(s)G(s) (77)
G(s) = p1s+(1− p1−q1)G(s)+q1sF(s)G(s). (78)

These equations can be solved by eliminating (say) G(s) from the first equation using the second, and then
solving a quadratic for F(s). One root can be discarded by noticing that since F(s) represents functions of
the form (76), they must be well behaved as s→ 0; one of the roots goes to infinity and the other goes to zero.
For the renewal increment defined as the first passage time to state 2 given X0 = 1 to be finite with probabilty
1, it is clear that F(1) = P{A01} = 1 and G(s) = P{A12} = 1 are needed. Setting s = 1in the well-behaved
roots of F(s) and G(s), we obtain

F(s) =
p0 p1 +q0q1 +2p1q0−

√
(p0 p1−q0q1)2

2p1q0 +2q0q1
(79)

G(s) =
p0 p1 +q0q1 +2p0q1−

√
(p0 p1−q0q1)2

2p0q1 +2q0q1
(80)

, which both result in the requirement that p0 p1 ≥ q0q1. If T is the random variable representing the cycle
time of the enzyme, the renewal increment is

Xi =
N

∑
i=1

T,

where N = N f + Ng. The moments and cumulants of Xi can be determined using a generating function like
in (13), and the cumulants of the renewal process constructed using the Xi can be obtained from the equations
in Section A.2.
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