Math 210, Fall 2025

Problem Set # 1

Question 1. A fair coin is flipped 7 times. Let X = total number of heads. The sample space consists of all possible sequences of outcomes of the 7 flips.

a) Write down three possible outcomes ω from the sample space Ω .

Solution. Three possible outcomes are

$$(H, H, H, H, H, H, H), (T, H, H, H, H, H, H), (T, T, H, H, H, H, H).$$

b) How many outcomes are in the sample space?

Solution. The sample space has 2^7 different outcomes.

c) Compute $P(\{\omega\})$ for each outcome ω you wrote down in part (a).

Solution. All outcomes are equally likely. The probability of each outcome is $1/2^7$.

d) Compute $X(\omega)$ for each outcome ω you wrote down in part (a).

X counts the total number of heads.

$$X(H, H, H, H, H, H, H) = 7$$

$$X(T, H, H, H, H, H, H) = 6$$

$$X(T, T, H, H, H, H, H) = 5.$$

e) Find $P(X \le 5)$. Hint: Find P(X > 5) first.

Solution. Using the hint we find

$$P(X \le 5) = 1 - P(X > 5) = 1 - P(X = 6) - P(X = 7).$$

Now computing each probability

$$P(X = 7) = \frac{1}{2^7}$$

$$P(X = 6) = \frac{7}{2^7}$$

thus

$$P(X \le 5) = 1 - \frac{1}{2^7} - \frac{7}{2^7} = \frac{2^7 - 8}{2^7}.$$

Question 2. Consider a coin where the probability of heads is 0 . Do**not**assume <math>p = 1/2. Flip it until the first tails occurs. Let X = number of flips needed to see the first tails.

1. How many possible outcomes are in the sample space?

Solution. There are infinitely many outcomes.

2. Find P(X = 1), P(X = 2), and P(X = 3).

Solution.

$$P(X = 1) = (1 - p)$$

$$P(X = 2) = p(1 - p)$$

$$P(X = 2) = p^{2}(1 - p).$$

3. Write down a formula for P(X = k), where k is a positive integer.

Solution.

$$P(X = k) = p^{k-1}(1 - p).$$

this is an example of the geometric distribution.

Question 3. In E.O. Thorp's *The Mathematics of Gambling* he considers a strategy for blackjack due to Baldwin et al in which the probability that the player wins (and the house dealer loses) is .5005. Suppose this is accurate. If you have \$100 to gamble and on one turn you gamble 100y dollars where y is a number in [0,1] then after one turn your resulting fortune is

$$\begin{cases} 100(1+y) & \text{with probability } 0.5005 \\ 100(1-y) & \text{with probability } 0.4995. \end{cases}$$

Let X be the random variable representing your fortune after one turn of the game.

1. Find the expectation E[X] as a function of y.

Solution.

$$E[X] = 100(1+y)P(X = 100(1+y)) + 100(1-y)P(X = 100(1-y)) = 100 + 0.1y.$$

2. Find the value of y in [0,1] which maximizes E[X].

Solution. E[X] is a line with positive slope and its maximum value occurs at y=1.

3. Consider the random variable

$$k = \log(X/100)$$

known as the *logarithmic return rate*. Calculate E[k] as a function of y.

Solution.

$$E[k] = \log(100(1+y)/100)P(X = 100(1+y)) + \log(100(1-y)/100)P(X = 100(1-y))$$
$$= 0.5005\log(1+y) + 0.4995\log(1-y).$$

4. Find the value of y in [0,1] which maximizes E[k].

Solution. First we find the critical points

$$\frac{d}{dy}E[k] = \frac{0.5005}{y+1} - \frac{0.4995}{1-y}.$$

now setting $\frac{d}{dy}E[k]=0$ we find y=.001. Now we evaluate E[k] at 0.001,0 and 1. The maximum value of $5\cdot 10^{-7}$ is obtained at the point y=0.001.